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Abstract Density-gradient theory provides a macroscopic
approach to modeling quantum transport that is particu-
larly well adapted to semiconductor device analysis and
engineering. After some introductory observations, the ba-
sis of the theory in macroscopic and microscopic physics
is summarized, and its scattering-dominated and scattering-
free versions are introduced. Remarks are also given about
the underlying mathematics and numerics. A variety of ap-
plications of the theory to both quantum confinement and
quantum tunneling situations are then reviewed. In doing so,
particular emphasis is put on understanding the range of va-
lidity of the theory and on its unexpected power as a phe-
nomenology. The article closes with a few comments about
the future.
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1 Introduction

1.1 Electron transport modeling

To understand, design, and optimize electronic devices and
circuits it is essential that one have a quantitative descrip-
tion of how electrons move in semiconductors and in their
connecting wires and insulators. The subject of this review
is one such description known as density-gradient (DG)
theory that is particularly well suited to the engineering of
semiconductor devices that are small enough to be impacted
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by the direct effects of quantum mechanics, and especially
by the phenomena of quantum confinement and quantum
tunneling.

The various mathematical descriptions of electron flow
in biased semiconductors that have been proposed and ap-
plied over the past half-century can be usefully divided into
two types: theories and phenomenologies. Theories are dis-
tinguished by the fact that their equations are grounded in
physical principles and can thereby be predictive. By con-
trast, phenomenologies use mathematics (often drawn willy-
nilly from well-founded theories) merely as fitting functions
for regressing physical data and are thus solely of interpola-
tive value. The DG approach can be used in both of these
ways, but it is best understood by stressing its foundations
and its status as a theory.

As in other areas of mathematical physics, the theories of
electron transport can be further split according to whether
they are microscopic or macroscopic in character (see Ta-
ble 1). The key distinction is in the nature of the primitive el-
ements that form the theory; microscopic theories deal with
the individual electrons (or electron wave functions, density
matrices, etc.) whereas their macroscopic counterparts are
framed in terms of electron populations. An additional im-
portant sub-division among microscopic theories is that into
classical and quantum theories based on whether or not it is
possible to localize the individual electrons in phase space.
Some prime examples are listed in Table 1. That macro-
scopic theories have no discrete electrons means a similar
scission among these theories makes no sense. Instead a bi-
furcation exists into lumped and continuum theories based
on the size of the electron populations, with DG theory
falling into the continuum category as indicated in Table 1.
An obvious key requirement for the existence of a macro-
scopic electron transport theory is that there be enough elec-
trons to form a population(s) with meaningful average prop-
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Table 1 Classification of
electron transport theories Macroscopic Microscopic

Lumped Continuum Classical Quantum

Equivalent circuits,
transmission lines

Diffusion-drift,
density-gradient

Semi-classical electron
dynamics, Boltzmann
transport

Schrödinger, density-
matrix, Wigner
function, NEGF

erties. This foundational consideration—known in the con-
text of continuum theories as the continuum assumption—
has many subtleties that are beyond the scope of this pa-
per. We note only that DG theory often pushes its contin-
uum assumption well beyond where one might expect it to
fail, and this is possible largely because of the small mass
of the electron and the consequent strong “smearing” effect
of quantum mechanics. In any event, our approach with the
continuum assumption is simply to assert its validity, and to
look for justification only a posteriori (if at all) based on the
theory’s predictions and results. Of course there are certain
situations (e.g., molecular conduction) for which a contin-
uum approach will be patently inappropriate.

1.2 Quantum transport

The three main “quantum” behaviors of an electron gas in a
semiconductor—all of course well known—that one would
like to describe with a quantum transport theory are:

(a) Quantum compressibility. Quantum mechanics induces
an electronic repulsion (via the Pauli principle) that
makes electron gases in solids harder to compress than
an equally dense thermal distribution of classical point
particles.

(b) Electron evanescence. Evanescence is a facet of the
wave nature of electrons that, as in the analogous phe-
nomena in acoustics and optics, arises when electron
waves encounter a “barrier” region incapable of sus-
taining their propagation. Macroscopically this effect is
commonly manifested as the phenomena of quantum
confinement and quantum tunneling.

(c) Electron diffraction/interference. The wave nature of
electrons can also give rise to diffraction and interfer-
ence effects. From a macroscopic standpoint, the pri-
mary manifestation is in the effective mass, with other
macroscopic consequences being seen only in the rare
circumstance of a coherent electron gas.

Of these effects, quantum compressibility is the easiest to
incorporate in a macroscopic description, and is in fact or-
dinarily included in diffusion-drift theory simply by using a
Fermi-Dirac equation of state. Encompassing the evanescent
phenomena of confinement and tunneling within a macro-
scopic theory are the prime purposes of DG theory, and
thus these constitute the main subject matter of this review.

Lastly, diffraction/interference effects are least amenable to
a macroscopic description with only the effective mass as-
pect being easily incorporated. In any event, in all such us-
ages of macroscopic theory it is important to emphasize that
the goal is emphatically not to replicate or replace quantum
mechanics, but rather to provide a convenient and physically
well-founded means for describing the quantum phenomena
seen in electronic devices.

Since the electrons that form the populations we are con-
cerned with are incoherent, the only possible physical prin-
ciples on which a macroscopic electron transport descrip-
tion can be based are classical ones—primarily the conser-
vation laws of mass, momentum and energy. For this rea-
son, macroscopic-continuum theories like DG theory are of-
ten referred to as classical field theories [1]. We are thus
led to the seemingly contradictory statement that DG the-
ory is a classical theory of quantum phenomena. That such
a thing is possible is perhaps best illustrated by consider-
ing the example of barrier tunneling. Of course, microscop-
ically this process cannot be treated classically, e.g., it is
well known that a tunneling electron experiences a momen-
tary violation of energy conservation.1 But as already noted,
a macroscopic theory is concerned not with individual elec-
trons but with electron populations for which any such vio-
lation might well be negligible. For instance, in most tunnel-
ing devices the time scales of interest are set by macroscopic
RC delays that are far longer than the microscopic tunneling
time. Hence a description of the device’s physics would not
be materially affected if the tunneling were regarded as in-
stantaneous, in which case the electron gas would always
conserve energy as the classical laws demand. Thus, in gen-
eral, the question is whether the violations of conservation
laws that characterize the quantum behavior at the particle
level average out and can thereby be neglected at the popu-
lation level. In these terms the issue is much like the theory’s
other continuum assumptions that we assert to hold at least
for some important device situations.

1.3 Density-gradient approach

Diffusion-drift (DD) theory is the original and most com-
mon continuum theory of electron transport in semicon-

1This violation of course disappears in quantum field theory when one
includes virtual particles in the description.
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ductors. It originated in work by Schottky, and was for-
malized by Shockley and Van Roosbroeck in the early
1950s [2, 3]. As will be discussed in Sect. 2.1, in its sim-
plest form DG theory represents a direct generalization
of DD theory in which the equation of state of the elec-
tron (or hole) gas depends not only on its density but also
on its density-gradient. This gradient dependence intro-
duces non-locality, and in this way can be used to repre-
sent quantum non-locality to lowest order. With this sim-
ple change, the equations are found to exhibit new be-
haviors, including ones with the physical characteristics
of quantum confinement and tunneling. Mathematically
these new solution behaviors are simply the consequence
of the introduced gradients raising the order of the differen-
tial system and thereby inducing “quantum” boundary lay-
ers.

DG theory’s central concept of using gradients as a
lowest-order representation of physical non-locality is a
powerful idea with many antecedents. The basic notion was
appreciated first by Maxwell in his pioneering work on the
kinetic theory of gases wherein he showed that the equa-
tion of state of even a monatomic hard-sphere gas has gra-
dient corrections [4]. In the years since this fruitful idea
has recurred in many areas of mathematical physics in both
classical and quantum mechanical contexts. Of especial in-
terest for us is an approach to quantum mechanics dating
from the 1930s in the work of Wigner [5], Bloch [6] and
Weizacker [7] who, faced with the difficulties of solving the
Schrödinger equation, devised approximations to it based on
gradient expansions. Although one goal of such work (be-
ginning with Weizacker) was in fact macroscopic—namely,
to derive density-gradient corrections to the electron gas
equation of state—that there existed an associated macro-
scopic transport theory was not appreciated until the late
1980s with the development of DG theory [8].2

The subject of this review is DG theory as an engineering
tool for modeling electronic devices. The paper is organized
as follows. In Sect. 2, the basic equations of DG theory are
summarized in general form with emphasis on the important
distinction of classical field theory between physical prin-
ciples and material response functions. The following two
main sections are devoted to applications of DG theory, with
the first (Sect. 3) covering quantum confinement situations
and the second (Sect. 4) treating quantum tunneling situa-
tions. The paper concludes in Sect. 5 with a few remarks
including about future research directions.

2It is perhaps worth noting that the use of gradient expansions in mi-
croscopic work to represent the kinetic energy operator of quantum
mechanics faded in the 1960s with the advent of density-functional
theory [9], and especially the Kohn-Sham formalism. Interestingly, the
latter also led to fresh uses for gradient expansions as a means of ap-
proximating the non-local exchange-correlation functional, and in this
form they remain a fixture of electronic structure calculations [10].

2 Density-gradient theory

DG theory is an example of a classical field theory [1], and
as such it is formed of three basic parts: Primitive elements,
physical principles, and material response functions. The
primitive elements are the mathematical field variables (e.g.,
densities, forces, etc.) that are postulated to quantify the con-
stituents and interactions of the model. As their name im-
plies, the physical principles (Sect. 2.1) are the constraints
imposed on the primitive elements by the laws of physics,
and it is the breadth of applicability of these laws that en-
dows the overall theory with predictive power. The final and
most subtle part of a classical field theory is the material re-
sponse functions (Sect. 2.2). In principle, these functions are
fairly arbitrary and are constrained only by considerations of
consistency, symmetry and invariance. The weakness of the
latter constraints can allow a considerable amount of curve-
fitting to creep in, and therefore there is a crucial additional
bias toward simple material response functions. Most com-
monly, this simplicity is embodied in functions that are lin-
ear and instantaneous. Broadly speaking, a “good” classical
field theory is one whose primitive elements and physical
principles are such that simple material response functions
lead to an accurate and widely applicable description.

DG theory is exactly like DD theory in defining a semi-
conductor as consisting of three interpenetrating continua:
An electron gas, a hole gas, and a rigid lattice continuum.3

These constituents are assumed characterized by various
densities (e.g., of charge, momentum or energy), and as
noted earlier this is a major assertion of the theory (known
as continuum assumption). Moreover, the constituents are
assumed to interact through various forces (e.g., between
neighboring elements of the electron gas) and sources/sinks
(e.g., mediating the transfer of charge between constituents)
with the key generalization distinguishing DG theory from
DD theory being the form of the force interactions assumed
to exist within the carrier gases.

2.1 Physical principles

As emphasized in Sect. 1.2, the physical principles of a
macroscopic description of quantum transport are necessar-
ily classical; in particular, they consist of the conservation
of charge/mass and momentum plus the laws of electrosta-
tics and thermodynamics. These physical principles are ex-
pressed mathematically in terms of the primitives of the the-
ory, and the most general form of this mathematics is as in-
tegral equations [1, 8]. With one exception (see below), the
physical principles of DG theory are as follows.

3Both DD and DG theories are readily generalized to include multiple
electron and hole gases, e.g., see [11].
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Charge/mass balance. The equations expressing the con-
servation of charge/mass for the electron and hole gases
readily reduce to the following expressions:

∂

∂t

∫
V

ndV = −
∫

S

n · nvndS +
∫

V

GnpldV and

∂

∂t

∫
V

pdV = −
∫

S

n · pvpdS +
∫

V

GnpldV

(2.1.1)

where n and p are the number densities and vn and vp are
the average velocities of the electron and hole gases, respec-
tively, and n is the outward unit normal to the surface S.
In words, these equations say that the total electron or hole
charge in the arbitrary volume V increases in time due to
inflow through its surface S, and via generation processes
inside V . The lattice’s impurities are assumed fully ionized
so that the generation term (Gnpl) includes only the net pair
generation rate. Also, since the lattice is assumed immobile,
the lattice charge/mass balance equation is trivially satis-
fied.

Linear momentum balance. The momentum balance
equations for the electron and hole gases are4

∂

∂t

∫
V

mnnvndV = −
∫

S

n · mnnvnvndS +
∫

S

n · τndV

−
∫

V

qnEdV +
∫

V

qnEndV

∂

∂t

∫
V

mppvpdV = −
∫

S

n · mppvpvpdS +
∫

S

n · τpdV

+
∫

V

qpEdV +
∫

V

qpEpdV

(2.1.2)

where τn and τp are the stress tensors, −qnE and qpE are
the forces exerted by the electrostatic field, and qnEn and
qpEp are drag forces that are the macroscopic resultants of
innumerable microscopic scattering events that act to im-
pede the flow of carriers through the lattice. In words, these
equations are expressions of Newton’s Second Law that hold
that the time rates of increase of the gas momenta in the vol-
ume V are equal to the net influxes of momentum through
its surface S plus the supplies of momentum to the gases
from the forces exerted by the electron gas, the electrostatic
field, and the lattice. With the lattice assumed immobile, its
momentum balance equation is trivially satisfied.

Angular momentum balance. In the interest of brevity
we omit the integral forms expressing angular momentum
conservation in the electron and hole gases. As will be

4For simplicity we have omitted treatment of the effective mass. Its
proper macroscopic origin is in the electron-lattice interaction (ex-
pressing the effect of electron diffraction by the lattice) of which we
have included explicitly only the dissipative portion as the last term in
(2.1.2). See [12] for further discussion.

seen, their only consequence (when magnetic effects are
not present) is a demand that the stress tensors be symmet-
ric.

Electrostatics. The familiar integral conditions express-
ing Gauss’s Law of electrostatics and Faraday’s law in the
electrostatic limit are:

∫
S

n · DdS =
∫

V

q(N − n + p)dV and

∮
C

E · ds = 0

(2.1.3)

where N is the charge density of the lattice (usually due
mostly to ionized impurities) and D = E + P.

Energy balance. In this paper we assume the temperature
to be uniform so that all macroscopic energy is mechanical
(i.e., heat energy need not be considered explicitly) and the
energy balance equations do not provide additional dynam-
ical information. Nevertheless, they are needed for under-
standing the form of the material response functions, and are
especially important when the electron and hole gas inter-
actions include the double-pressures that are mechanically
self-equilibrating (and so do not appear in (2.1.2)) yet are
still capable of storing energy. The integral conditions ex-
pressing the conservation of energy for the electron and hole
gases in DG theory are:

∂

∂t

∫
V

(
nεn + 1

2
mnnvn · vn

)
dV

= −
∫

S

n · vn

(
nεn + 1

2
mnnvn · vn

)
dS

+
∫

S

n · (τn · vn − ηn∇ · vn

)
dS

−
∫

V

qnvn · EdV +
∫

V

HnldV

∂

∂t

∫
V

(
pεp + 1

2
mppvp · vp

)
dV

= −
∫

S

n · vp

(
pεp + 1

2
mppvp · vp

)
dS

+
∫

S

n · (τp · vp − ηp∇ · vp

)
dS

+
∫

V

qpvp · EdV +
∫

V

HpldV

(2.1.4)

These equations say that the time rate of change of total en-
ergy (internal + kinetic) in V is equal to the net rate of en-
ergy flow through S plus the rates of working of the various
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forces and the double-pressure vectors ηn and ηp .5 Lastly
for the lattice (which again is assumed not to move) we have

∂

∂t

∫
V

ρεldV =
∫

V

E · ∂P
∂t

dS −
∫

V

(Hnl + Hpl)dV

+
∫

V

HnpldV (2.1.5)

Second law of thermodynamics. Because the second law
of thermodynamics is a “negative” constraint about what
should not happen, it is best to defer its treatment until after
the material response functions are discussed.

2.2 Material response functions

The equations of DG theory derived in the previous section
form a mathematically indeterminate system, i.e., with more
variables than equations. This indeterminacy reflects the fact
that the general physical principles do not dictate the state of
the system, nor should they for otherwise every semiconduc-
tor would be identical. To supply the material-specific infor-
mation, and thereby complete the system, one must adjoin
auxiliary equations known as material response functions.
These extra equations are arbitrary apart from certain re-
strictions of consistency, symmetry and invariance. Of these
constraints, the most important for us is the demand that the
material response functions be thermodynamically admissi-
ble.

The first step toward understanding the thermodynamic
constraints on the material response functions is to write
down the energy balance equation for the entire sys-
tem. To this end, we add up the differential versions of
(2.1.4)–(2.1.5), substitute (2.1.1) appropriately, and split off
isotropic pressures using the definitions τn ≡ −PnI + σn

and τp ≡ −PpI + σp . Using indicial notation for clarity,
the resulting total local energy balance equation is

ρ
dlεl

dt
+ n

dnεn

dt
+ p

dpεp

dt
− Pn

n

dnn

dt
− Pp

p

dpp

dt

− ηn
,j

n

dnn,j

dt
− η

p
,j

p

dpp,j

dt
− Ej

dlPj

dt

− vnj,i

[
σn

ij − n

(
ηn

k

n

)
,k

δij + ηn
i n,j

n

]

− vpj,i

[
σ

p
ij − p

(
η

p
k

p

)
,k

δij + η
p
i p,j

p

]

= −qnEnj
vnj

− qpEpj
vpj

5The forms of the terms in (2.1.4) that dictate how the higher-order
stresses contribute to the energy balance is best understood from a
variational argument given in [8]. Alternatively, it can be regarded as
justified by the results that (2.1.4) leads to in Sect. 2.3.

− Gnpl,j

(
ηn

j

n
+ η

p
j

p

)
+ Hnpl − Gnpl

(
εn + Pn

n

− 1

2
mnvnj

vnj
+ εp + Pp

p
− 1

2
mpvpj

vpj

)
(2.2.1)

Since the stresses and double-pressures act in a purely non-
dissipative manner (e.g., assuming there are no viscous ef-
fects) (2.2.1) divides cleanly into the terms on the left side
of the equality that are purely recoverable, and those on the
right side that are purely dissipative. The recoverability of
the terms on the left side implies path independence and in-
tegrability, and hence the existence of an entropy function η

with

ρ
dlεl

dt
+ n

dnεn

dt
+ p

dpεp

dt
− Pn

n

dnn

dt
− Pp

p

dpp

dt

− ηn
,j

n

dnn,j

dt
− η

p
,j

p

dpp,j

dt
− Ej

dlPj

dt

− vnj,i

[
σn

ij − n

(
ηn

k

n

)
,k

δij + ηn
i n,j

n

]

− vpj,i

[
σ

p
ij − p

(
η

p
k

p

)
,k

δij + η
p
i p,j

p

]

= ρT
dη

dt
(2.2.2)

where the temperature T is the integrating factor. Combin-
ing (2.2.1) and (2.2.2) we further obtain an expression for
the rate of entropy production

ρ
∂η

∂t
= − 1

T

[
qnEnj

vnj
+ qpEpj

vpj
+ Gnpl,j

(
ηn

j

n
+ η

p
j

p

)

− Hnpl + Gnpl

(
εn + Pn

n
− 1

2
mnvnj

vnj
+ εp

+ Pp

p
− 1

2
mpvpj

vpj

)]
≥ 0 (2.2.3)

where the inequality—often called the Clausius-Duhem
inequality—is the local version of the thermodynamic pro-
scription on decreasing entropy.

When the terms in the energy balance equation are as
above being either purely recoverable or purely dissipa-
tive, the constitutive equations split along similar lines with
the recoverable constitutive equations being constrained by
(2.2.2) and the dissipative constitutive equations by (2.2.3)
as discussed next.

Recoverable constitutive equations. In order for σn and
σp to depend only on the density-gradients as desired (and
not on the individual components of the strain-gradients),
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the terms in (2.2.2) multiplying the velocity-gradients must
vanish which implies:

τn
ij =

[
−Pn + n

(
	nn,k

n

)
,k

]
δij − 	n

n
n,in,j

τ
p
ij =

[
−Pp + p

(
	pp,k

p

)
,k

]
δij − 	p

p
p,ip,j

(2.2.4)

where we have used the previously noted symmetry of the
stress tensors (from angular momentum balance) to write
ηn

k ≡ 	nn,k and η
p
k ≡ 	pp,k . Defining the thermodynamic

state function χl ≡ εl − Pj · Ej − ηT , (2.2.2) with (2.2.4)
implies:

ρ
dlχl

dt
+ n

dnεn

dt
+ p

dpεp

dt
− Pn

n

dnn

dt
− Pp

p

dpp

dt

− 	n

2n

dn�n

dt
− 	p

2p

dp�p

dt
+ Pj

dlEj

dt
+ ρη

dT

dt
= 0

(2.2.5)

where �n ≡ n,in,i and �p ≡ p,ip,i . The form of (2.2.5)
then indicates that the lattice acts as a simple dielectric with
χl = χl(E, T ), and that the electron and hole gases are well
described by:

εn = εn(n,�n,T ), εp = εp(p,�p,T ) (2.2.6)

Using the chain rule, (2.2.5) can then be re-expressed as

(
n
∂εn

∂n
− Pn

n

)
dnn

dt
+

(
p

∂εp

∂p
− Pp

p

)
dpp

dt

+
(

n
∂εn

∂�n

− 	n

2n

)
dn�n

dt
+

(
p

∂εp

∂�p

− 	p

2p

)
dp�p

dt

+
(

ρ
∂χl

∂E
+ Pj

)
dlEj

dt
+

(
ρη + ρ

∂χl

∂T
+ n

∂εn

∂T

+ p
∂εp

∂T

)
dT

dt
= 0 (2.2.7)

For this equation to hold under all circumstances it must be
that the coefficients of the time derivatives vanish, and the
recoverable constitutive equations then follow:

Pn = n2
∂εn

∂n
, Pp = p2 ∂εp

∂p

	n = 2n2
∂εn

∂�n

, 	p = 2p2 ∂εp

∂�p

P = −∂χl

∂E
, ρη = −ρ

∂χl

∂T
− n

∂εn

∂T
− p

∂εp

∂T

(2.2.8)

Dissipative constitutive equations. The rate of entropy pro-
duction inequality (2.2.3) can be re-written as:

ρ
∂η

∂t
= − 1

T

[
qnEnj

vnj
+ qpEpj

vpj

+ Gnpl,j

(
	nn,j

n
+ 	pp,j

p

)
− Hnpl

+ Gnpl

(
εn + Pn

n
− 1

2
mnvnj

vnj
+ εp + Pp

p

− 1

2
mpvpj

vpj

)]
≥ 0 (2.2.9)

The form of this equation indicates that the primary depen-
dences of the dissipative constitutive equations are

En = En(vn), Ep = Ep(vp)

Gnpl = Gnpl(n,�n,p,�p)
(2.2.10)

however these forms do not preclude possible dependences
on other variables, and any such dependences are permitted
so long as the inequality (2.2.9) is satisfied. Insisting that
each term in (2.2.9) is individually positive ensures the total
is also, and yields

En(vn) · vn ≤ 0, Ep(vp) · vp ≤ 0

Hnpl − ∇Gnpl

(
	n∇n

n
+ 	p∇p

p

)
− Gnpl

(
εn + Pn

n

− 1

2
mnvnj

vnj
+ εp + Pp

p
− 1

2
mpvpj

vpj

)
≥ 0 (2.2.11)

Examples. To illustrate the material response functions with
some specific examples, we first note that since DG the-
ory must reduce to DD theory when the density-gradients
are small (and inertia is negligible), a basic guideline in de-
veloping specific material response functions for DG theory
is to use those of DD theory but possibly include density-
gradient corrections. And as we shall see, this simple ap-
proach spawns theories that are often quite accurate.

(i) Equations of state. The most important material re-
sponse functions of DG theory are the “equations of
state” that characterize the electron and hole gases. As
we have seen, these equations are no longer DD the-
ory’s simple relationships between pressure and den-
sity, but instead generalize into expressions relating
stress to the density and its spatial derivatives. More-
over, we found that the dependence on the spatial deriv-
atives was not arbitrary, but had to be formed of specific
combinations of derivatives of the internal energies as
given in (2.2.8) with (2.2.6). For these energy functions
to reduce to those of DD theory we assume without loss
of generality that
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εn(n,�n) = εDD
n (n) + εDG

n (n,�n) and

εp(p,�p) = εDD
p (p) + εDG

p (p,�p)
(2.2.12)

where εDD
n (n) and εDD

p (p) are the gradient-independ-
ent functions of DD theory, and εDG

n (n,�n) and
εDG
p (p,�p) are the correction terms that vanish as the
density-gradients go to zero and we have suppressed
the temperature dependences for clarity. The simplest
form for these energies are ones that yield linear rela-
tionships between pressure and density, and between
double-pressure and density-gradient; that the former
defines an ideal gas leads to us to refer to the latter as
defining an ideal gradient gas:

Pn = kBT n and Pp = kBTp (ideal gases)

(2.2.13a)

ηn = bn∇n and ηp = bp∇p (ideal gradient gases)

(2.2.13b)

where bn and bp are (linear) density-gradient (DG)
coefficients that characterize the strength of the gradi-
ent responses of the gases. In general, these latter coef-
ficients could be second-rank tensors and, as we shall
see in Sect. 3.4, this possibility can be helpful when the
DG equations are used phenomenologically. Equations
(2.2.13a) and (2.2.13b) imply the energy functions

εDD
n (n) = kBT ln

(
n

n0

)
and

εDD
p (p) = kBT ln

(
p

p0

) (2.2.14a)

εDG
n (n,�n) = bn

2

�n

n2
and

εDG
p (p,�p) = bp

2

�p

p2

(2.2.14b)

where n0 and p0 are constants. With higher densi-
ties and density-gradients, the linear theories are no
longer such good approximations, and modifications
to (2.2.13a), (2.2.13b), (2.2.14a) and (2.2.14b) must
be considered. The familiar example is the corrections
that enter for high density due to Fermi-Dirac statistics.
Very little comparable work has been done on nonlin-
ear DG theories.

(ii) Polarization. In the electrostatic limit the dielectric
properties are almost always well approximated by the
usual linear, instantaneous relation

P = χdE and D = εdE (2.2.15)

where χd is the electric susceptibility and εd ≡ ε0 +χd

is the electric permittivity.

(iii) Drag forces. As in DD theory [13], the simplest drag
expressions are the linear, instantaneous forms:

En = −vn/μn and Ep = −vp/μp (2.2.16)

where μn and μp must be positive by virtue of the en-
tropy inequalities in (2.2.10) and are often taken to de-
pend on the electric field, e.g., to represent velocity sat-
uration. Whether such mobility models are modified in
value or form in DG theory is as yet unexplored.

(iv) Generation-recombination. In DD theory the forms
for Gnpl are typically nonlinear and sometimes non-
instantaneous [13]. Most such models can be carried
over into DG theory with a simple proviso that we il-
lustrate using the fairly general expression

Gnpl = gnpl[neqpeq − np] (2.2.17)

where the quantity gnpl depends on the particular re-
combination model and neqpeq is the equilibrium value
of the np product that assures that Gnpl vanishes un-
der equilibrium conditions. For DD theory with ideal
gases all of this is simple because of the relationship
neqpeq = n2i where ni is the known intrinsic density.
With a more general equation of state, this reduction is
no longer possible, and it becomes necessary to solve
the Poisson equation and therefrom to obtain neq and
peq for inclusion in (2.2.17). The situation in DG the-
ory is analogous, however, in this case one needs to
solve three coupled differential equations (see below)
for the equilibrium quantities.

2.3 Chemical potential formulation

In principle, the equations of Sects. 2.1 and 2.2 complete the
formulation of DG theory. However, as with DD theory, un-
der most circumstances these equations can be greatly sim-
plified by a transformation to chemical potentials. This for-
mulation is also important as the mathematical justification
for band diagrams and for their extension to DG theory. For
simplicity we focus on the electron gas whose stress tensor
obeys (2.2.4) with (2.2.6) and (2.2.8), i.e.,

τn =
[
−n2

∂εn

∂n
+ 2n∇ ·

(
n

∂εn

∂�n

∇n

)]
I − 2n

∂εn

∂�n

∇n∇n

(2.3.1)

Motivated by the form of (2.1.2), we observe that

−∇ · τn = ∇
[
n2

∂εn

∂n
− 2n∇ ·

(
n

∂εn

∂�n

∇n

)]

+ 2∇ ·
[
n

∂εn

∂�n

∇n∇n

]
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= n∇
[
∂nεn

∂n
− 2∇ ·

(
n

∂εn

∂�n

∇n

)]

= qn∇φDG
n (2.3.2)

where the temperature and material properties have been as-
sumed uniform, and φDG

n is a generalized chemical poten-
tial for the electron gas in DG theory that is defined by:

qφDG
n ≡ ∂nεn

∂n
− ∇ ·

(
	n∇n

n

)
(2.3.3)

The analogous development for holes clearly yields

− ∇ · τp = qp∇φDG
p

where qφDG
p ≡ ∂pεp

∂p
− ∇ ·

(
	p∇p

p

)
(2.3.4)

When the electron/hole momenta are negligible, the exis-
tence of the chemical potentials allows the linear momentum
balance equations (2.1.2) to be replaced by much simpler in-
tegral forms, namely:

∫
S

n(φDG
n − ψ)dS =

∫
V

EndV and

∫
S

n(φDG
p + ψ)dS =

∫
V

EpdV

(2.3.5)

In addition, in terms of the chemical potentials, the mater-
ial response functions for linear gradient gases are readily
obtained from (2.3.3) and (2.3.4) as

φDG
n = φDD

n − 2

s
∇ · (bn∇s) and

φDG
p = φDD

p − 2

r
∇ · (bp∇r)

(2.3.6)

where φDD
n ≡ ∂nεDD

n /∂n,φDD
p ≡ ∂pεDD

p /∂p, s ≡ √
n, and

r ≡ √
p. The second terms in these expressions are some-

times called “quantum potentials” because of their formal
similarity to a quantity in Bohm’s formulation of quantum
mechanics [14].

2.4 Differential equations and boundary conditions

From the integral forms for the physical principles as given
in Sects. 2.1 and 2.3, both differential equations and bound-
ary conditions can be derived with their common source as-
suring consistency. The former are reached when the field
variables are differentiable, usually via a direct application
of the divergence theorem. Boundary conditions result when
the field variables are not differentiable, and as in electro-
magnetism are usually derived by taking limits of the inte-
grals over “Gaussian pillboxes”.

Charge/mass balance. The differential equations that fol-
low from (2.1.1) are:

∂n

∂t
+ ∇ · (nvn) = Gnpl and

∂p

∂t
+ ∇ · (pvp) = Gnpl

(2.4.1a)

and assuming no interface recombination, the corresponding
boundary conditions are:

n · [n+v+
n − n−v−

n ] = 0 and

n · [p+v+
p − p−v−

p ] = 0
(2.4.1b)

Momentum balance. The differential equations that fol-
low from (2.3.3) and (2.3.4) are:

mn

dnvn

dt
= q∇�DG

n + qEn − mnvn

Gnpl

n
and

mp

dpvp

dt
= −q∇�DG

p + qEp − mpvp

Gnpl

p

(2.4.2a)

where �DG
n = ψ − φDG

n and �DG
p = ψ + φDG

p are general-
ized electrochemical potentials (or generalized quasi-Fermi
levels) for DG theory, and the material (total) derivatives
take their usual Eulerian forms of dnvn/dt ≡ ∂vn/∂t + vn ·
∇vn and dpvp/dt ≡ ∂vp/∂t + vp · ∇vp as in fluid me-
chanics. In words these equations say that the gradients of
the electrochemical potentials act as driving “forces” on the
carrier gases and are balanced by drag and/or by inertial
“forces”. The boundary conditions expressing momentum
balance are:

φDG+
n − φDG−

n = fn and

φDG+
p − φDG−

p = −fp

(2.4.2b)

where fn and fp are the forces per charge exerted by the
semiconductor surface or interface on the carriers and we
have used the fact that the electric potential is continuous
(assuming no surface dipoles).

Electrostatics. The differential equations of electrostatics
as derived from (2.1.3) are familiar:

∇ · D = q(N − n + p) and E = −∇ψ (2.4.3a)

and the usual boundary conditions are:

n · [D+ − D−] = σ and

t · [E+ − E−] = 0 or

[ψ+ − ψ−] = 0

(2.4.3b)

where σ is the surface charge density and t is the vector
tangent to the interface.

Energy balance. These equations are not given explicitly
here, however, they were used in deriving (2.2.1).
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2.5 Microscopic connections

The near-universal view among electronics researchers
and engineers is that the fundamental justification for DD
theory—and by implication, for DG theory—is necessarily
microscopic and must be grounded in the Boltzmann equa-
tion, the Wigner-Boltzmann equation or other such formu-
las [15]. This view is belied by the material presented in
Sects. 2.1–2.4 that in itself constitutes a purely macroscopic
foundation. Known as a classical field theoretic approach
[1], the power of this strategy was first revealed early in
the 19th century by Euler and Cauchy who used it to ob-
tain a correct macroscopic theory of solids (elasticity) while
knowing very little about the underlying microscopics. That
this macroscopic approach has been enormously consequen-
tial in many areas of mathematical physics is indisputable.6

At the same time, its existence in no way implies that micro-
scopic approaches are without value, and indeed the two per-
spectives should be regarded as complementary with each
having advantages and each shedding light on the basic
physics.

The main advantage of a microscopic development of a
macroscopic description lies in the possibility of establish-
ing explicit connections between macroscopic coefficients
in the material response functions (e.g., the mobility) and
the underlying microscopics (e.g., the scattering physics).
Such connections are invaluable for enhancing physical un-
derstanding, and they can sometimes be quantitative and es-
pecially useful for projecting the performance of semicon-
ductors that have not yet been grown of device quality [16].
Given the limited length of this review, our discussion of the
microscopic viewpoint will be confined to the crucial DG
equation of state (2.3.6).

Although not originally developed in the context of a
transport theory, derivations of the DG equation of state go
back to the beginnings of quantum mechanics (as noted in
Sect. 1.2) and to work of Weizacker [7]. A variety of other
derivations with differing assumptions followed [17]; be-
low we sketch a fairly general development based on den-
sity functional theory that is due to Perrot [17]. The starting
point is Mermin’s proof [18] that there exists a functional
of the density n(x), namely G[n], that is independent of the
potential V (x) and for which

�
[
n(x)

] =
∫

V (x)n(x)dx + e2

2

∫
n(x)n(x′)
|x − x′| dxdx + G[n]

with G[n] =
∫

g[n]dx (2.5.1)

6Other prominent examples where correct macroscopic equations were
obtained by macroscopic methods before the relevant microscopic
physics was understood are fluid dynamics (inviscid case by Euler be-
ginning in 1752; viscous case by Navier in 1837), metallic conduction
(Drude in 1900), superconductivity (London in 1935) and liquid crys-
tals (Ericksen in 1964).

is a minimum when n(x) is the equilibrium density. At this
minimum, � is the grand potential of the system, the first
integral in (2.5.1) is the potential energy associated with
V (x), the second integral is the energy associated with the
Coulomb interaction, and the local functional g[n] groups
contributions from the kinetic energy and from exchange
and correlation.

The derivation begins by considering situations in which
the density is slowly varying (but with possibly large excur-
sions) so that g[n] is well represented by a gradient expan-
sion [9]:

g[n] = g0(n) + g
(2)
2 (n)∇n · ∇n + g

(2)
4 (n)∇2n∇2n

+ g
(3)
4 (n)∇2n∇n · ∇n + g

(4)
4 (n)(∇n · ∇n)2 + · · ·

(2.5.2)

whose form has been restricted by rotational invariance and
by the idea that it can be unique only to within a divergence.
Inserting (2.5.2) into (2.5.1) and minimizing the grand po-
tential �[n] subject to the constraint that the average density
is n0 (handled with a Lagrange multiplier μ) leads to the
condition

V (x) − μ + e2
∫

n(x)

|x − x′|dx + g′
0 − g

(2)′
2 ∇n · ∇n

− 2g(2)
2 ∇2n + · · · = 0 (2.5.3)

By identifying μ = −q�DG
n , g0(n) = nεn(n), and g

(2)
2 (n) =

ebn/2n, it is readily shown that (2.5.3) is the same as
the equilibrium version of (2.4.2a)1 with (2.3.6)1. Hence
the foregoing constitutes a microscopic derivation of the
DG equation of state (2.3.6)1. More importantly, we can
obtain explicit microscopic formulas for the coefficients
in (2.5.2)—and especially for g

(2)
2 since it relates to the

density-gradient coefficient bn—by examining (2.5.3) for
the case of an almost constant (but possibly rapidly varying)
density. Considering a uniform electron gas with an imposed
small positive charge perturbation of wave number q, it is
readily shown from (2.5.3) that the electronic polarizability
can be written to lowest order as [9]

α(q) ≡ 1− g′′
0

4π
q2 +

[(
g′′
0

4π

)2

− g
(2)
2

2π

]
q4 + · · · (2.5.4)

where q ≡ |q|. Since the polarizability is related to the elec-
tric susceptibility χ(q) by 4πχ(q)/q2 = α(q)/[α(q) − 1]
the coefficients in (2.5.4) can be estimated in the random
phase approximation via Lindhard’s famous formula:

χ(q) = −e2m

4π3

∫
fk−q/2 − fk+q/2

�2k · q
dk

where fk ≡ 1

1+ ek
and ek ≡ exp

[
1

kBT

(
�
2k2

2m
− μ

)]

(2.5.5)
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Focusing on slowly varying perturbations (to which the
Lindhard expression best applies), we expand (2.5.5) for
small q and obtain

χ(q) = − e2

4π3

∫
∂fk

∂μ

[
1+ �

2q2

8mkBT

(
1− 2fkek

)

+ 1

6

(
�
2k · q

2mkBT

)2(
1− 6fkek + 6f 2

k e2k
)]

dk

(2.5.6)

where the right side can be reduced to Fermi-Dirac integrals
Fm(μ/kBT ). By comparing terms in (2.5.4) and (2.5.6), we
can then find expressions for g′

0 and g
(2)
2 , and therefrom mi-

croscopic formulas for ϕn and bn:

ϕn = g′
0 = kBT ln

(
n

NC

)
and

bn = 2ng
(2)
2 ≡ �

2

4emnrn

(2.5.7a)

where

NC = 2

(
mnkBT

2π2�2

)3/2

and rn = 3F 2−1/2

F1/2F−3/2
(2.5.7b)

It is readily shown [19, 20] that if the electrons could be
in a pure state (i.e., at absolute zero with the Pauli exclu-
sion principle ignored), then the factor rn would be unity.7

Hence, rn can be said to represent the effect of the statis-
tics. According to the above derivation, rn depends only
on μ/kBT and in the non-degenerate limit (μ → −∞),
(2.5.7b)2 shows directly that rn = 3, whereas in the degener-
ate limit (μ → ∞), Weizacker’s result is recovered (rn = 9)
[7]. Between these limits, numerical calculations reveal a
smooth transition as plotted in Fig. 2.5.1.

By providing the formulas in (2.5.7a) and (2.5.7b), the
foregoing derivation does indeed represent a microscopic
foundation for DG theory that provides insight into the ori-
gin and meaning of the DG coefficient. This is of genuine
value. At the same time, it should be emphasized that the ap-
proximations/assumptions in the derivation are severe, and it
is unknown how the results change when, for instance, the
density variations are both large and rapid as they are in the
situations of most interest. More generally, this points up
a generic shortcoming of microscopic derivations, that they
usually provide necessary conditions for a particular result,
and not the sufficient conditions that one would really like to
have.

Lastly, we note that when DG theory is used as a phenom-
enology (see Sects. 3.4 and 4.5) the coefficient bn is used as

7The formula (2.5.7b)2 does not apply to this case because the expan-
sions on which it is based become invalid at low temperature as is evi-
dent from (2.5.6).

Fig. 2.5.1 Plot of the DG statistical factor rn as a function of the nor-
malized chemical potential as calculated microscopically in the ran-
dom phase approximation

a regression parameter with fits being made either to quan-
tum mechanical calculations or to experiments. When com-
paring with quantum mechanics, one generally knows the
effective mass, and so the fitting can be regarded as a means
of determining the statistical factor rn. If the fits are instead
made to experiment, it seems more convenient to assume
rn = 3, and then use the fitting to estimate a DG effective
mass mDG

n .

3 Quantum confinement

3.1 DG-confinement theory: physics, mathematics, and
numerics

For many important semiconductor devices the quantum
physics of evanescence (see Sect. 1.2) is manifested as an
equilibrium or quasi-equilibrium phenomenon. Most com-
monly this occurs in “quantum wells” wherein the (quasi-)
equilibrium is imposed by confining potential barriers in
one-, two- or three-dimensions. For example, in 1D quantum
wells form the channels of most field-effect transistors and
the active layers of heterostructure lasers; in 2D they are the
FINFETs and nanowires currently of considerable research
interest; and in 3D they are the semiconductor quantum dots
that are attractive as luminescent biolabels, and possibly also
for optoelectronic devices and solar cells. The equilibrium
nature of such situations in the confined direction(s) implies
that components of the inertia in those directions can be ne-
glected. If additionally one can assume that the transport in
any non-confined direction(s) is scattering-dominated, then
as in DD theory, the momentum terms in (2.4.2a) can be
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neglected and these equations reduce to force (per charge)
balance equations:

−∇�DG
n = En and ∇�DG

p = Ep (3.1.1)

where �DG
n = ψ − φDG

n and �DG
p = ψ + φDG

p are again
the generalized electrochemical potentials of DG theory.
Being relevant to transport in confined situations, we re-
fer to (3.1.1) as the defining equations of DGC (for DG-
Confinement) theory. They are direct generalizations of the
analogous equations of DD theory in which the gradients
of electrochemical potentials act as driving “forces” on the
carrier gases and are balanced by drag forces [2, 3, 13]. In-
troducing the assumptions of an ideal gradient gas (2.2.13b)
and linear drag (2.2.16) we obtain

Jn = nμn∇ψ − Dn∇n + 2μnbnn∇
(∇2s

s

)
and

Jn = −pμp∇ψ − Dp∇p + 2μpbpp∇
(∇2r

r

) (3.1.2)

where the diffusion coefficients are given by the Einstein
relations, e.g., Dn ≡ μn∂φDD

n /∂n. The equations in (3.1.2)
are identical in form to the DD current equations except for
the addition of DG quantum correction terms. That these
correction terms arise from the electron gas response means
that they are of the same physical character as the normal
diffusion terms, and are thus properly viewed as quantum
diffusion currents. Nevertheless, the mathematics is such
that as in DD theory one can also interpret the gradients of
the electrochemical potentials as “effective electric fields”,
in which case the DG effects can be construed as Bohmian
“quantum potentials” [14].

For mathematical/numerical purposes it is helpful to re-
cast the DGC differential equations (2.4.1a), (3.1.1) with
(2.3.6), and (2.4.3a) as the 2nd-order system

∇ · (nμn∇�DG
n

) = Gnpl − ∂n

∂t
and

∇ · (pμp∇�DG
p

) = ∂p

∂t
− Gnpl

(3.1.3a)

∇ · (bn∇s) = s

2

[
�DG

n − ψ + φDD
n

]
and

∇ · (bp∇r) = r

2

[
�DG

p − ψ − φDD
p

] (3.1.3b)

∇ · (εd∇ψ) = q(n − p − N) (3.1.3c)

to be solved for �DG
n , �DG

p , s, r and ψ . Much like the com-
parable equations of DD theory (i.e., those obtained from
(3.1.3a), (3.1.3b) and (3.1.3c) by setting bn and bp to zero),
these equations form an elliptic-parabolic PDE system and
this has a variety of mathematical and numerical conse-

quences.8 For example, a simple scaling of the equations
reveals that they are characterized by five intrinsic length
scales: the Debye screening length, electron and hole dif-
fusion lengths, and electron and hole quantum lengths with
the latter being of the form LQ = √

b/φ (where b is either
bn or bp , and φ is a voltage/energy scale such as a barrier
height). That all of these length scales multiply high-order
derivatives of (3.1.3a), (3.1.3b) and (3.1.3c) means that they
represent singular perturbations [23, 24]. Because of the el-
liptic/parabolic character of the equations, the characteristic
“breakdown” in the solutions that occurs when these intrin-
sic lengths are “small” (i.e., compared to the geometry) will
be localized into boundary layers. The boundary layers as-
sociated with the diffusion and Debye lengths are familiar,
while that of LQ defines the layer in which the quantum in-
fluence of the confining barrier is manifested. Because the
electron and hole gases are incoherent, the LQ are of the or-
der of the deBroglie wavelength of an individual electron,
and as this is usually on a scale of nanometers, the quan-
tum boundary layers will generally be nested well inside the
other layers.

In solving the DGC equations numerically a variety of
approaches can be considered.9 This author has found ef-
fective a “Slotboom” approach [25] wherein the densities
are transformed according to u = kBT ln(n/N0)/2q and
v = −kBT ln(p/N0)/2q with N0 being an arbitrary density.
In terms of the numerical variable set �DG

n , �DG
p , u, v, and

ψ , the equations are:

∇ · (
equ/kBT μn∇�DG

n

) = Gnpl

N
− qequ/kBT

kBT

∂u

∂t
and

− ∇ · (
e−qv/kBT μp∇�DG

p

) = qe−qv/kBT

kBT

∂v

∂t
+ Gnpl

N

(3.1.4a)

∇ ·
(
2qbn

kBT
equ/kBT ∇u

)
= equ/kBT [

�DG
n − ψ + φDD

n

]
and

∇ ·
(2qbp

kBT
e−qv/kBT ∇v

)
= −e−qv/kBT [

�DG
p − ψ − φDD

p

](3.1.4b)

∇ ·
(
εd∇ψ

)
= qN

(
exp

(
2qu

kBT

)
− exp

(
− 2qv

kBT

)
− 1

)

(3.1.4c)

where we have assumed uniform doping and set N0 = N .
A practical algorithm results when these equations are dis-

8Somemathematically oriented discussions of the DGC equations have
appeared in [21–23].
9For special cases, [19] developed some semi-analytical approaches
based on a variational principle and a first energy integral that exist for
the system (3.1.3a), (3.1.3b) and (3.1.3c) in equilibrium. There have
also been efforts to use the approximation techniques of singular per-
turbation theory [24]. These possibilities are of academic interest, but
for practical work the purely numerical approach is almost always pre-
ferred because of its flexibility and scope.
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cretized in either a finite-difference or finite-element frame-
work, with Newton’s method invoked to handle the non-
linearities and with the linear algebra solved by a direct
approach. For added efficiency, a Scharfetter-Gummel dis-
cretization scheme may be implemented [26–28]. As in the
analogous DD situation, an essential for getting this scheme
to converge is a good initial guess; the author has found that
starting with artificially inflated values for the Debye and
quantum lengths makes for a robust strategy.

Tools for device analysis using the DGC equations as de-
scribed above are readily available. All of the major com-
mercial device simulators offer a DGC capability, e.g., it
comes as an option in Silvaco’s ATLAS simulator,10 in Syn-
opsys’s SENTAURUS simulator,11 and in Xilinx’s ISE Sim-
ulator [29].12 The author has also found Comsol’s general-
purpose finite element simulator13 to be quite effective at
solving these equations, although at present this tool is inca-
pable of implementing the Scharfetter-Gummel discretiza-
tion.

3.2 Quantum wells in 1D

One-dimensional quantum wells are not only critical ele-
ments of many semiconductor devices, but they also pro-
vide a parade ground for exhibiting some of the basic char-
acteristics of the DG approach, and a testbed for gauging
the range and accuracy of DGC theory. Facilitating mat-
ters is the fact that the corresponding quantum mechani-
cal analyses—typically in the effective-mass Schrödinger or
Hartree (Schrödinger-Poisson) approximations—are usually
straightforward both in formulation and in computation. In-
deed, quantum mechanics often constitutes a practical alter-
native for such problems. In this regard it should be remem-
bered that the main basis for interest in DG theory is not
simple 1D quantum wells, but rather its broader utility for
practical device engineering applications with larger multi-
dimensional structures, non-equilibrium conditions, and/or
transport that is strongly coupled to electrostatic (or other)
fields.

The first careful study of the DGC equations as applied to
various 1D quantum well problems appeared in [19]. A sec-
ond relevant paper focused on quantum confinement in sili-
con inversion layers with direct relevance to MOS technol-
ogy [30]. The latter paper also explored several generaliza-
tions of the linear version of DGC theory of Sect. 3.1 aimed
at extending its range. Selected findings from these two in-
vestigations are presented in this section, along with results
from similar unpublished calculations that have been per-
formed more recently.

10See http://www.silvaco.com.
11See http://www.synopsys.com.
12See http://www.xilinx.com.
13See http://www.comsol.com.

Fig. 3.2.1 Electron density profiles in an infinite barrier quantum well
as computed by DGC theory with rn = 1 or rn = 3 and compared
with quantum mechanical calculations. For this 20 nm wide well with
mn = 1.0me , T = 300 K, and an areal density of 2 × 1010 cm−2, the
assumption of rn = 3 works quite well

We begin by considering a simplest case of quantum
wells in which electrons are confined by barriers that are
infinitely high. In this idealized arrangement, the infinite
barrier forces the density to zero at the edges of the well,
and so only the region inside the well needs to be mod-
eled. As a first simulation we test the validity of DGC theory
by comparing it with quantum mechanics for the case of a
20 nm quantum well at room temperature with mn = 1.0me

and a well density of 2 × 1010 cm−2. For the quantum me-
chanical calculation one of course solves a one-dimensional
particle-in-box problem for the eigenvalues Ei and normal-
ized eigenfunctions ψi(x), and then computes the electron
density in equilibrium with band-filling according to the
Fermi-Dirac distribution. For the DGC calculations, we as-
sume the statistical factor rn introduced in Sect. 2.5 takes
the theoretical values of either the pure-state (rn = 1) or
the high-temperature limit (rn = 3). From the solution pro-
files plotted in Fig. 3.2.1 it is evident that the latter limit
is the relevant one, with the agreement being quite good
although not perfect. And in general, similar comparisons
show DGC theory with rn = 3 to provide an excellent rep-
resentation of the confinement so long as the effective mass
is not too small, the quantum well is not too narrow, and/or
the temperature is not too low. As illustration, in Fig. 3.2.2
we show density profiles across half of the same symmetric
20 nm well for various values of the effective mass. DGC
theory with rn = 3 again does well until the mass becomes
quite small (< 0.1mn). A similar set of curves with vary-
ing temperature in Fig. 3.2.3 finds that appreciable error
enters only at the very lowest temperatures (< 20 K). The
discrepancies in these plots can be understood as occurring
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Fig. 3.2.2 Density profiles across half the quantum well width with all
as in Fig. 3.2.1 except that the effective mass is varied

Fig. 3.2.3 A similar plot to Fig. 3.2.2 but with temperature as the pa-
rameter being varied

when the mass, temperature, and/or well thickness are such
that only a few subbands are occupied and “high tempera-
ture” average statistics no longer represents a good approx-
imation [19]. In the smallest mass and lowest temperature
curves in Figs. 3.2.2 and 3.2.3 where the errors are largest,
roughly 80% of the electrons are in the lowest subband (see
Fig. 3.2.4). Finally, examining the extreme limit of a 2 nm
quantum well in which only a single sub-band has apprecia-
ble occupation, we find in Fig. 3.2.5 that DGC theory in the
pure-state limit (rn = 1) provides a somewhat more accurate
representation. Thus, at moderate densities the most chal-
lenging cases for DGC theory are those in which the elec-
trons are concentrated in a few sub-bands. One approach for
such problems would be to construct a multi-subband the-

Fig. 3.2.4 The occupancy of the lowest subband in the quantum well
situations of Figs. 3.2.1–3.2.3 as the effective mass or the temperature
are varied

Fig. 3.2.5 A similar plot to Fig. 3.2.1 but for a 2 nm quantum well. In
this case, DGC theory with rn = 1 is seen to perform slightly better

ory in which each subband satisfies its own DGC equations
[11, 30]. However, given the cumbersomeness of such a the-
ory and the fact that it would have to be calibrated with a
quantum mechanical simulation, a better approach is proba-
bly that of a “single-gas” DGC phenomenology as discussed
in Sect. 3.3.

The inadequacy with respect to subband structure is not
the only kind of error that can occur in DGC theory’s de-
scription of quantum confinement. A second important error
is in the representation of the inhomogeneous electron gas as
the density becomes elevated and higher-order gradient ef-
fects become more important. A mild manifestation of this
type of error was already seen in the high curvature regions
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Fig. 3.2.6 Density profile comparisons between DGC theory (rn = 3)
and quantum mechanics at high density. DGC curves are shown both
with and without quantum compressibility effects included

of the DGC profile in Fig. 3.2.1 (rn = 3 curve). To study the
issue under more extreme circumstances, we simulate the
same quantum well but with higher levels of sheet density
as shown in Fig. 3.2.6. For such modeling it should be noted
that one needs to include the effect of quantum compress-
ibility on φDD

n (n) in (3.1.1), although Fig. 3.2.6 shows the
size of this correction to be small. In any event, the main
point of the comparisons in Fig. 3.2.6 is that when the sheet
density gets as high as 2×1014 cm−2 (which corresponds to
volumetric densities of ∼ 1020 cm−3), not only do the quan-
titative discrepancies get larger, but the DGC description
completely fails to represent the Friedel oscillations that are
a well-known aspect of quantum mechanical screening [31].
Whether a higher-order DGC theory could capture this lat-
ter phenomenon is not known, but in any case it is clear that
linear DGC theory is significantly deficient when it comes
to representing confined electron gases at high density.

From a technological perspective, the most important
quantum well is that that occurs in silicon MOSFETs ad-
jacent to oxide interfaces. Because the barrier presented by
SiO2 to the conduction band is quite high (∼ 3.5 eV), elec-
tron inversion layers on p-type silicon can be regarded as
existing in quantum wells with effectively infinite barriers.
However, this infinite-barrier situation is more complicated
than those discussed previously because, for the usual (100)
orientation material, the six degenerate conduction bands of
silicon split into two non-equivalent sets of valleys with dif-
ferent masses and capacitance characteristics. Nevertheless,
in [30] it was found that DGC solutions with rn = 3 and
mn taking the bulk Si value (0.328me) agree remarkably
well with those obtained from Hartree simulations. As il-
lustration, in Fig. 3.2.7 we show electron density profiles
as computed by both DGC theory and quantum mechanics

Fig. 3.2.7 Comparison of predictions of DGC theory and quantum
mechanics for a silicon inversion layer. The disagreement far from the
surface is due to the quantum mechanical calculation not including
enough subbands

for two different gate voltages in inversion, and find excel-
lent agreement in the important high-density region near the
Si–SiO2 interface. Curiously, this agreement does not hold
up far from the surface where the density is very low, an
error that is actually in the quantum mechanics and is due
to the 80 subbands included in that calculation not being
enough. Thus the much simpler DGC theory seems to be
providing the more accurate description. But a closer exam-
ination [30] reveals that the good performance of DGC the-
ory is fortuitous and arises from compensating errors that
keep the product mnrn in (2.5.7a)2 roughly constant and
about equal to 0.328 × 3 ∼= 1. Specifically, as the device is
biased into stronger inversion, increased occupancy in the
lighter-mass in-plane minima causes the average effective
mass mn to drop, while at the same time the increased band
filling causes the factor rn to rise. A better macroscopic ap-
proach to this physics, introduced in [30] but not discussed
further here, was based on noting that the changing distrib-
ution of carriers between the non-equivalent valleys can be
modeled as a nonlinear DG effect.

Because of the degree of control afforded by theory,
comparing theoretical predictions is especially effective for
learning about the physical content of the theories. But semi-
conductor device physics is still largely an experimental dis-
cipline, and therefore the ultimate test of theory remains
how well it incorporates the physics germane to a particu-
lar device, while leaving out extraneous details so as to en-
hance understanding and utility.14 To emphasize this point,
we briefly review results from an investigation that com-
pared DG theory with experiments on ultra-thin oxide MOS

14This statement applies not only to DGC theory but also to quantum
mechanics. In general, the latter is better at bringing in all the physics,
but less adept at focusing on the essentials.
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Fig. 3.2.8 Comparison between the experimental C–V characteristics
of an ultra-thin-oxide silicon capacitor and predictions made by DD
and DGC theories. The agreement of the latter is reasonable, though
not perfect

capacitors [32]. One complication of these devices was that
they had polysilicon gates and therefore could exhibit de-
pletion effects not just in the semiconductor substrate but
also in the gate.15 In Fig. 3.2.8 we compare the experimental
capacitance-voltage characteristics from one such capacitor
with estimates obtained by both DD and DGC theories. The
classical DD calculation is clearly incorrect in that it shows
none of the capacitance reduction associated with quantum
effects. DGC theory obviously does much better, although it
is not perfect. That there is good agreement in accumulation
(i.e., negative bias) where the capacitance is most influenced
by the quantum effects shows that the discrepancies in the
DGC curve come not from flaws in the quantum representa-
tion but rather from other inadequacies such as in describing
generation/recombination.16

To this point we have discussed confinement problems
in which the barriers are well approximated as being in-
finitely high. But of course this is an idealization and in
many practical semiconductor device situations the finite-
ness of the barrier height plays an important role. Having
a finite barrier brings in two additional physical phenom-
ena, namely, the thermal excitation of carriers over the bar-
rier (“thermionic emission”) and the exponentially decaying
penetration of carriers into the barrier via quantum evanes-
cence. Both of these effects allow charge carriers to enter
the barrier region and both can be important in devices, e.g.,
allowing trapping/detrapping in the barrier material. In a

15Another complication was that the substrate had an inhomogeneous
doping profile that had to be carefully profiled using SIMS and in-
cluded in the simulations.
16Threshold voltages are hard to predict with any theory, and so
the matching of theoretical and experimental threshold voltages in
Fig. 3.2.8 was achieved by curve-fitting.

Fig. 3.2.9 A similar plot to Fig. 3.2.1 but with a finite barrier height
of 0.3 eV

quantum mechanical description both phenomena are cap-
tured (for equilibrium) so long as the continuous spectrum
of eigenstates at high energy is also included. Macroscopi-
cally, DD theory was deficient in providing only a good de-
scription of the thermionic emission, but DGC theory would
seem to make a simple unified treatment possible. In par-
ticular, the thermionic emission is included in the forego-
ing equations (just as in DD theory) by having the ordinary
chemical potential(s) be discontinuous by the band offset(s),
and the physics of evanescence is represented by the DG
term. That all of this occurs within a single description is
elegant, parsimonious, and potentially useful. However, it
is also wrong! What is erroneous is that within the barrier
the (higher energy) electrons participating in the thermionic
emission form a largely separate population from those elec-
trons (of lower energy) that evanesce into the barrier, yet the
unified DGC description treats them as one. As a practical
matter, this can often be justified by noting that in most sit-
uations one or of the other of these two phenomena domi-
nates. Alternatively, one can properly capture the underlying
physics by splitting the electron gas inside the barrier in two,
an idea pursued further below.

To illustrate the DG simulation of carrier confinement by
barriers that are finite in height we consider a situation anal-
ogous to that of Fig. 3.2.1 with a 20 nm quantum well and
mn = 1, but now with a barrier height of 0.3 eV. DGC re-
sults with rn = 1 and rn = 3 are shown in Fig. 3.2.9 together
with the quantum mechanical profile, and we observe that
again DGC theory with rn = 3 provides the better repre-
sentation. But looking at these profiles in greater detail in
Fig. 3.2.10, we find that neither version of DGC theory (la-
beled “w/diff”) is fully capturing the barrier penetration be-
havior with the quantum mechanical decay being essentially
a simple exponential (i.e., a straight line in the semi-log plot)
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Fig. 3.2.10 A semi-log version of Fig. 3.2.9 emphasizing the barrier
penetration and comparing DGC solutions with and without diffusion
included in the description of the evanescent carriers inside the barrier

whereas both DGC results are sub-exponential. The curva-
ture in the DGC profiles arises from the fact that the uni-
fied description unphysically permits the evanescent carriers
to diffuse. With this in mind, we introduce the “split” de-
scription mentioned in the previous paragraph. In this treat-
ment, thermionic emission is incorporated via a second bar-
rier population whose density is determined simply by the
chemical potential at the barrier edge, while the evanescent
population is treated as before but with ordinary diffusion
turned off and φDD

n fixed at its value at the barrier edge. The
results of this simulation, again for both rn = 1 and rn = 3
and with the densities of the two barrier populations added
together, are also shown in Fig. 3.2.11. As expected, the new
DGC profiles are indeed now simple exponentials. More-
over, we now find that the DGC calculation with rn = 1 is
the preferred one being almost identical inside the barrier to
that predicted by quantum mechanics. The reason for this
limit being appropriate is that, as a function of depth, the
barrier penetration is increasingly dominated by the longest
wavelength (lowest energy) carriers, and this implies a sup-
pression of the carrier statistics effect that is responsible for
larger rn values (see Sect. 2.5). The remaining error in the
rn = 1 profile is largely the result of the previously discussed
inaccuracy of the rn = 1 theory inside the well. This is high-
lighted in a linear plot (not shown) that again finds DGC
theory with rn = 3 to provide a much better representation
inside the well. To get the best of both the obvious solution is
to create a “hybrid” that uses rn = 1 in the barrier and rn = 3
in the well. And this works very nicely if one smoothes the
transition between the rn values.

Based on our earlier discussion, it is no surprise that
the results for the finite barrier quantum well degrade when
the effective mass decreases, the well narrows, the temper-
ature drops or the density becomes very high. As an illus-

Fig. 3.2.11 The analogous plot to Fig. 3.2.2 for a quantum well with
a finite barrier. The DGC solution assumes rn = 1 and leaves out the
unphysical diffusion of the evanescent carriers inside the barrier

tration of this, in Fig. 3.2.11 we test DGC rn = 1 predic-
tions against quantum mechanics for masses of mn = 1.0,
0.3, 0.1, and 0.03. The agreement in this semi-log plot is
remarkably good in all cases with the larger error in the bar-
rier for the lightest mass mostly being due to propagation
of the increased error inside the well. Similar calculations
with narrower wells, lower temperatures or higher densities
also show growing errors just as were seen in Figs. 3.2.3 and
3.2.6.

3.3 DGC phenomenology

Establishing the precise boundary between physics and
curve-fitting is generally challenging, and in our case this
means it is hard to know just when the DGC description
ceases to be a legitimate field theory and instead becomes a
phenomenology. On the one hand, as noted in Sect. 2.2, it
can be tricky distinguishing between an inadequacy in the
particular choices for the material response functions [e.g.,
in (2.2.13b)] and a true failure of the DG framework itself.
And on the other hand, because of their manifest limitations,
microscopic calculations like those of Sect. 2.5 tend not be
a reliable guide, e.g., the lack of agreement in the previous
section between DGC theory with rn = 1 or rn = 3 is at best
circumstantial evidence for the inadequacy of DGC theory.
With these remarks as background, we observe that an im-
portant characteristic of DGC theory (and also of DG tun-
neling theory as discussed in Sect. 4) is that it often allows
for remarkably accurate curve-fits to quantum mechanical
density profiles [19]. Why this is has never been explained,
but its broad-ranged accuracy suggests that it may be more



J Comput Electron (2011) 10:65–97 81

Fig. 3.3.1 Phenomenological use of DGC theory to fit quantum me-
chanical results for infinite barrier quantumwells of varying width. The
inset shows the values of rn need to produce these fits

than just “lucky” mathematics.17 In any event, because it
involves curve-fitting of microscopic results (and for other
reasons outlined below), we refer to this approach as DGC
phenomenology. The basic procedure is no more than to use
the DG effective mass (mDG

n ≡ mnrn) or one of its con-
stituent parameters (mn or rn) as a coefficient for fitting the
quantum mechanics. And rather than employ a formal re-
gression procedure, we do the fits “by eye” while imposing
certain “reasonable” constraints as explained below.

As an example of DGC phenomenology, we examine
in Fig. 3.3.1 simulation results for infinite barrier quantum
wells of various widths as obtained by quantum mechan-
ics, by DGC rn = 3 theory, and by fitting solutions of the
DGC equations using rn as the parameter. For the latter, as
the well becomes wide, one finds the “best” value of rn to be
close to 3, with the exact choice affecting merely the distrib-
ution of the error. Because there seems little physical mean-
ing in such fine-tuning, we impose the constraint that rn be
no more than three. The results shown in Fig. 3.3.1 were ob-
tained with the rn value varying with well width as shown in
the inset. The fits are clearly not perfect, but overall the per-
formance is quite good. Of most interest is the fact that, for
narrow wells, using a reduced value of rn greatly improves
the entire profile. As noted in the previous paragraph, this
variation in rn is not a proof that we are now beyond the
capabilities of any DG-based field theory. But the observed
direct dependence of rn on the size of the “box” the elec-
tron gas resides in shows that this is a non-local effect and
thus is an improper extension of linear DGC field theory as

17Some discussion of a possible physical basis appeared in the last
reference in [16].

we have formulated it. Thus the fits in Fig. 3.3.1 must be
regarded as phenomenology.

Further discussions of the phenomenological uses of DG
theory appear in Sects. 3.4 and 3.5 and in Sect. 4 in the
contexts of various more complicated device situations that
involve not just ideal equilibrium confinement but also trans-
port.

3.4 Quantum confinement in multi-dimensions

The analyses of quantum-confined situations in multi-
dimensions using either quantum mechanics or DGC theory
are directly analogous to those in one-dimension, although
of course more numerically demanding. For this reason, we
limit coverage of this topic to just two examples of cylindri-
cally symmetric quantum dots (QDs) embedded in barrier
material. In both cases we assume the electrostatics can be
neglected, and that the QDs are charged with a single elec-
tron and are at a reduced temperature (77 K) in order to limit
the number of eigenvalues (40) needed for quantum me-
chanics to represent the Fermi-Dirac occupancy accurately.
The first illustration is of a simple cylinder, with a radius
of 10 nm, a height of 20 nm, a barrier height of 0.7 eV,
and unit electron mass. For the quantum mechanical cal-
culation only bound states have been included while in the
DGC calculation the effect of the continuum is automati-
cally incorporated (thermionic emission), but this difference
is insignificant since the barrier height is of appreciable size.
Also, in the DGC calculation the charging of the QD (by
the assumed single electron) is set by the choice of the con-
stant electrochemical potential. In Fig. 3.4.1 we compare the
density profiles as computed by quantum mechanics and by
DGC theory, with the latter assuming that, as in Fig. 3.2.10,
that in the QD rn = 3 (solid line) or rn = 1 (dotted line) and
in the barrier rn = 1 and φDD

n is constant for the evanes-
cent component of the total carrier density. Figure 3.4.1a
gives the profiles in the radial direction from the QD center,
while Fig. 3.4.1b has the profiles along the polar axis again
from the QD center. The data of Fig. 3.4.1a is also shown
in semilog form in Figs. 3.4.2a and 3.4.2b. Clearly, as in
the analogous 1-D situations, DGC theory with rn = 3 is in
much better agreement with quantum mechanics than is the
rn = 1 theory. The rn = 3 theory disagrees primarily in again
not capturing the Friedel oscillations that in the radial direc-
tion are especially pronounced because of the importance of
quantum mechanical states with significant angular momen-
tum in the cylindrical geometry. When the shape of the dot
is changed, the importance of these states can be reduced
or magnified leading to smaller or larger perturbations, and
with DGC theory giving a correspondingly better or worse
representation. As in 1-D, when the masses, the QD size,
or the temperature are reduced, DGC theory will become
increasingly less accurate. However, just as discussed in
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Fig. 3.4.1 Comparison of density profiles as computed by quantum
mechanics and DGC theory with rn = 3 or rn = 1 for a cylindrical QD.
The profiles are along cutlines (a) in the radial direction and (b) along
the polar axis both with origin at the QD center

Fig. 3.4.2 Semilog version of the plot in Fig. 3.4.1a; the analogous
plot to Fig. 3.4.1b looks much the same

(a)

(b)

Fig. 3.4.3 Comparison of density profiles as computed by quantum
mechanics, by DGC theory with rn = 3 and rn = 1, and by a DGC
phenomenology with rn = 1.1 for a half-ellipsoid QD composed of
InAs and with the barrier material being GaAs. The (a) linear and (b)
semilog profiles are plotted along the polar axis with the asymmetry
about the origin arising from the asymmetry of the QD

Sect. 3.3, it turns out that the multi-dimensional theory can
often serve as the basis for a remarkably accurate phenom-
enology simply by using rn or mDG

n as a fitting parameter.
To illustrate, we examine the case of an asymmetrical (in the
polar direction) half-ellipsoid with a major axis of 20 nm in
the polar direction and a minor axis of 10 nm in the radial di-
rection and with the materials having masses corresponding
to an InAs QD (0.023me) and a GaAs (0.067me) barrier. In
Figs. 3.4.3a and 3.4.3b we show linear and semilog profiles
along the polar axis as computed by quantum mechanics, by
DGC theory with rn = 3 or rn = 1, and by a DGC phenom-
enology in which rn is taken to have a best-fit value of 1.1
inside the QD. The asymmetry in all of the solutions is due
to the QD being a half-ellipsoid, and the agreement in the
case of the DGC phenomenology is seen to be superb.
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Overall, it should be said that the quality of the multi-
dimensional DGC solutions for the QDs is very good. In-
terestingly, in our examples the results seem unaffected by
the fact that the dots are occupied by just a single electron.
This is again due to the “smearing” effect of quantum me-
chanics that renders the continuum assumption of DG theory
quite robust. On the other hand, it must be acknowledged
that the DGC calculations do not provide much of the de-
tailed information that is of great interest in QD applica-
tions such as the level spacings. Thus, the DGC treatment
of these cases seems of limited practicality and should be
regarded mostly as illustration of the range and fidelity of
the theory/phenomenology for multi-dimensional problems
in which quantum-confinement is important.

3.5 Confined transport in quantum wells

As discussed in Sect. 3.1, when one has quasi-equilibrium
quantum confinement in the transverse direction(s) and
scattering-dominated transport in the non-confined lateral
direction(s), the inertia terms will be negligible in all direc-
tions and the DGC equations in (3.1.1) will constitute the
relevant formulation. This “orthogonal” description of the
physics is often apropos for modeling FETs, whether the
confinement is in 1D as in an ordinary planar structure, or in
2D as in nanowire FETs.18 The earliest such application of a
DGC-like theory to FET simulation was in [34–36]. We be-
gin this section by reviewing a much more recent transistor
example where again the physics can reasonably be treated
with the “orthogonal” approach.

Recent research on the antimony-containing semicon-
ductors of InSb, GaSb, and their alloys has boosted the hole
mobility measured in FET channels to record values of as
high as 1500 cm2/V-s, and this has encouraged the dream
of a high performance CMOS technology based on III–V
semiconductors. As part of an effort to investigate this pos-
sibility, the author recently employed DGC theory to look
at the performance potential of III–V pFETs [37]. One such
device, studied in depth experimentally in [38], had a 5 nm
InSb quantum well channel flanked by Al0.35In0.65Sb bar-
riers. A similar GaSb design studied in [39] had a 7.5 nm
GaSb quantum well with AlAs0.25Sb0.75 barriers. The hole
density profiles across these two structures as computed by
quantum mechanics in the k · p approximation for various
levels of charging of the wells are shown in Figs. 3.5.1a and
3.5.1b. Because of the narrowness of these wells and the
splitting of the heavy- and light-hole valence bands (anal-
ogous to the conduction band splitting seen in the Si in-
version layer in Sect. 3.2 but due both to the confinement

18Many investigators have been guided by a similar logic in creating
hybrid “theories” (sometimes referred to as a quantum drift-diffusion
approach) that marry a 1D Hartree analysis across the channel with DD
transport descriptions along the channel [33].

Fig. 3.5.1 Comparison of density profiles as computed by quantum
mechanics and has fit by DGC theory over a wide range of sheet den-
sities for (a) 5 nm InSb quantum well with Al0.35In0.65Sb barriers and
(b) 7.5 nm GaSb quantum well with AlAs0.25Sb0.75 barriers. The good
quality fits were obtained with mDG

p values of 0.04me and 0.06me ,
respectively

and mechanical strain), we employ the phenomenological
DGC approach as discussed in Sect. 3.3. We find that the
quantum mechanical profiles in Figs. 3.5.1a and 3.5.1b can
each be well fit with single values of the fitting parameter
mDG

p —0.04me and 0.06me for the InSb and GaSb pFETs,
respectively—used for all levels of charging. As in earlier
comparisons, the results are not perfect but are remarkably
good considering the tightness of the geometry, the com-
plexity of the valence bands, and the wide density variations;
the better agreement in the GaSb case is presumably due to
its wider well, heavier mass, and larger band offset. Next, we
assume a simple mobility model with the measured low-field
mobilities, velocity saturation and surface scattering [37],
and then compute the heterostructure FET characteristics
for the geometry shown in the inset to Fig. 3.5.2. The two
results plotted in Fig. 3.5.2 are for InSb and GaSb devices
with 40 nm channel lengths, and without and with recessed
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Fig. 3.5.2 DGC-computed transfer characteristics for 40 nm InSb
and GaSb FETs both with and without recessed gates. Also shown
are experimental result from [38] for a 40 nm InSb device with a
non-recessed gate. The inset depicts the device structure with the gate
recess

gates. The former mimics the InSb experiment of [38], and
as seen in the figure, excellent agreement is obtained. The
leakage current in this device is due to source-drain leakage
[38], and the good fit of Fig. 3.5.2 is obtained by assum-
ing a mobility in the AlInSb barrier material of 50 cm2/V-s.
Going further, we then used these device models to project
the benefits of device scaling. For a recessed-gate design, in
Fig. 3.5.3 we find that as the devices are scaled, the InSb de-
vices are about three times faster than the GaSb devices, but
the latter devices have two orders of magnitude less standby
power (assuming gate leakage is negligible). A similar ex-
amination of InGaSb channel devices shows them to come
close to combining the best of both the binary channel de-
vices [37]. One final point regarding these simulations is to
verify that the component of the DG term in (3.1.2)2 along
the channel is small so that it is indeed a good assumption to
treat the physics as “orthogonal”. To this end, in Fig. 3.5.4
we plot the I–V curves of a non-recessed 20 nm InSb FET in
which the component of the mass tensor along the channel is
varied. Clearly, when the mass is small enough (< 0.01me)
there is an effect, but because the mass is surely not this low,
we conclude that the physics along the channel direction is
indeed well represented by ordinary DD theory and the “or-
thogonal” DGC treatment is thus validated.

If similar calculations to those of Fig. 3.5.4 were car-
ried out for devices with channel lengths much shorter than
20 nm the component of the DG term in (3.1.2)2 along

Fig. 3.5.3 Scaling projections of the gate delay and static power dis-
sipation of InSb and GaSb FETs as estimated by DGC simulation

Fig. 3.5.4 DGC-calculated transfer characteristics for a 20 nm InSb
pFET with the lateral effective mass for holes treated as a parameter

the channel direction would undoubtedly become significant
and the “orthogonal” basis for DGC theory would be un-
dermined. It is nevertheless worth asking whether there is
any meaning and/or value in such a DGC description where
the lateral component of the DG term produces significant
current. That such currents can arise in a FET model19 was
first noted in [40], and in that paper it was further suggested
that they could serve as a way of modeling source-drain tun-
neling under subthreshold conditions. From the standpoint
of the physics this idea suffers from the same flaw seen in
our earlier treatment of barrier penetration in Sect. 3.2 (see
Fig. 3.2.10), namely that these “tunneling” carriers would
exhibit an unphysical normal diffusion. Alternatively, an er-
ror is signaled by the fact that the computed source-drain

19That DGC theory admits scattering-dominated “tunneling” currents
was first reported in [40] in the context of 1D problems.
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Fig. 3.5.5 Density profiles from [42] across the width of a nanowire
FET as computed by NEGF and the DGC phenomenology with varying
transverse mass. The best DGC fit results when mDG

nT
∼= 0.067

“tunneling” would be proportional to the material’s mobil-
ity. But despite this error, DGC theory might still be of value
as an easy way of including source-drain tunneling in a DD-
like simulation as pointed out in [40]. This is akin to rep-
resenting the physics of Fig. 3.2.10 by the unphysical but
reasonably accurate DGC (“w/diff”) rn = 3 curve in that
figure. The potential value of this simple approach for en-
gineering is best appreciated by comparing it with the quan-
tum mechanical alternative that becomes nearly intractable
if various real-world complications such larger-scale multi-
dimensional geometry, fully coupled electrostatics, and/or
scattering are included.20 Although not nearly as complex,
the proper DG approach introduced in Sect. 3.2 (and dis-
cussed in much greater detail in Sect. 4) would also present
challenges. The cost of the simple DGC phenomenology is
that, as demonstrated in [40], quantitative accuracy requires
that it be calibrated with quantum mechanics and/or experi-
ments.

As a second and more challenging application of the
DGC phenomenology to source-drain tunneling, the Glas-
gow group recently discussed similar modeling of a Si
nanowire transistor [42]. About as small as a “normal” FET
can possibly be, their device had a gate length of only 4 nm,
a wire cross-section of 3.2 × 3.2 nm, and a S/D doping
of 1020 cm−3. This ultra-scaled FET is surely well beyond
the scope of DG theory and a proper description must nec-
essarily be microscopic, with the non-equilibrium Green’s
function (NEGF) method being used in [42]. To explore
how well a DGC phenomenology might handle this extreme
problem, [42] took the DG effective mass to be a second-
rank tensor [see (2.2.13b) with (2.5.7a)] with differing com-
ponents in the transverse and longitudinal directions for ex-

20Because of the complexity of this calculation, to the author’s knowl-
edge it has been carried out only in very small structures in the “ballis-
tic” limit using NEGF.

Fig. 3.5.6 Density profiles from [42] along the length of a nanowire
FET as computed by NEGF and the DGC phenomenology with varying
lateral mass. The best DGC fit results when mDG

nL
∼= 0.1

Fig. 3.5.7 Subthreshold I–V characteristics from [42] for a nanowire
FET as computed by NEGF and the DGC phenomenology with varying
lateral mass. The best DGC fit results when mDG

nL
∼= 0.27

tra flexibility. The transverse mass was used to fit the quan-
tum confinement in the nanowire much as in Sect. 3.2 and
with similarly impressive results. Figure 3.5.5 shows density
profiles across the nanowire width with the optimal trans-
verse mass21 of mDG

nT = 0.067me giving very good agree-
ment. As seen in the figure, they found the quality of these
fits to be relatively independent of both the gate voltage and
the longitudinal mass. The situation in the longitudinal di-
rection is less clean because the physics one is trying to rep-
resent is more complicated, having both source-drain tun-
neling and electrostatic confinement of the electrons within
the source and drain regions. And as seen in Figs. 3.5.6
and 3.5.7, the results of [42] do indeed seem to reflect this
complexity: They find that different longitudinal masses are
needed to fit the NEGF-calculated density profiles along the

21Because of the definition in (2.5.7b), our masses are one third of
those given in [42].
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channel (Fig. 3.5.6, mDG
nL = 0.1me) and the subthreshold

leakage current (Fig. 3.5.7, mDG
nL = 0.27me). In any event,

given that this is a “molecular” scale FET, these results ob-
tained using the simple DGC phenomenology still seem ex-
traordinary.

4 Quantum tunneling

In most semiconductor transport situations, strong scattering
causes the charged carrier gases to behave very differently
from similar gases in the vacuum, e.g., in plasma physics or
electron optics. For instance, in classical electron transport
it is the dominance of scattering that allows inertia to be ne-
glected in Newton’s Second Law, and which thereby leads
to the DD transport equations. And in Sect. 3 we saw cor-
responding quantum transport examples that were governed
by the scattering-dominated DGC equations. Nevertheless,
there are many semiconductor transport situations where
weak-scattering conditions prevail. These generally occur
under circumstances of strong scaling when the geometric
size becomes small compared to the mean free path, the
so-called Knudsen regime of gas dynamics. Short-channel
“ballistic” transistors are a prime example involving clas-
sical transport, and for these situations a ballistic transport
description in which inertia plays a key role is essential.
For quantum transport, weak-scattering conditions are again
commonly encountered when the transport distance is small,
and this is best exemplified by quantum tunneling in the
elastic regime. The subject of this section is the “ballistic”
version of DG theory that describes quantum transport when
scattering is negligible (and inertia again plays a significant
role as we shall see) and whose most important application
is barrier tunneling.

In contrast to the scattering-dominated DGC description
of Sect. 3, the DG approach to quantum tunneling as dis-
cussed in this section is little used by the device research and
development communities at present. One reason for this, as
emphasized in Sect. 1, is the apparent contradiction in using
a “classical” theory to describe a “quantum” phenomenon.
Again this is possible because the DG description is macro-
scopic, and so is classical only in the sense of conserving
momentum and energy of the population and not of individ-
ual electrons (as a microscopic theory that is classical would
do). Another concern that has been broached in the literature
is computational stability [43]. The main goal of this section
is to review the equations, interpretation, performance and
limitations of DG tunneling theory in hopes of increasing its
acceptance and use. Thus our goal is not to cover all possi-
ble tunneling situations, but rather to highlight the evidence
that DG tunneling theory is legitimate as a theory, and po-
tentially of great value as an engineering tool. The clearest
understanding of DG tunneling to date appeared in a recent
paper [44] and the treatment here is based primarily on that
work.

4.1 DG-tunneling theory: physics, mathematics, and
numerics

Given the extremely short path lengths involved (typically
1–3 nm), quantum tunneling usually takes place without ap-
preciable scattering, a circumstance generally referred to as
“elastic tunneling”.22 The appropriate form of DG theory for
this regime is therefore the equations of Sect. 2 with scatter-
ing (and recombination) terms neglected. We call this DG
formulation DGT (for DG-Tunneling) theory, and we ob-
serve that just as DGC theory is DD theory with quantum
corrections, DGT theory can be viewed as ballistic transport
theory with quantum corrections. Assuming the DG correc-
tion is that of a linear gradient gas (2.2.13a), the govern-
ing differential equations of DGT theory can then be written
as:

∇ · (nvn) = −∂n

∂t
, ∇ · (pvp) = ∂p

∂t
(4.1.1a)

mn

dnvn

dt
= q∇

[
ψ − φDD

n + 2

s
∇ · (bn∇s)

]

mp

dpvp

dt
= −q∇

[
ψ + φDD

p − 2

r
∇ · (bp∇r)

] (4.1.1b)

∇ · (εd∇ψ) = q(n − p − N) (4.1.1c)

where the left hand sides in (4.1.1b) involve the material
derivatives that were defined in connection with (2.4.2a).
A further implication of the narrowness of the barriers is
that space charge will almost always be negligible (except
when the electrodes are metal [45]) so that the right side of
(4.1.1c) can usually be ignored. As in ballistic transport, the
lack of scattering also leads to complications. For one thing,
the negligible interaction among carriers implies that the
electron/hole populations injected from different electrodes
must each be described by their own transport equations.
Furthermore, the directionality of the flows means that the
physics—and hence the boundary conditions—at the emit-
ting (or “upstream”) electrode will differ from that of the
absorbing (or “downstream”) electrode.

Central to an understanding of DGT theory is an appre-
ciation of the import of the left sides of (4.1.1b). These
terms are of course Newtonian representations of the fact
that the electron gas has (effective) mass/inertia/kinetic en-
ergy. At the same time, as discussed in Sect. 2.5, the DG
terms in these equations bring in a lowest-order representa-
tion of the quantum mechanical kinetic energy operator. It
is a fundamental assertion of DG theory that having both of
these terms is not double counting, but rather is a statement
that the total kinetic energy can be broken up into macro-
scopic and microscopic contributions much like the split in

22The important topic of inelastic tunneling will not be considered in
this review.
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classical gas dynamics of microscopic kinetic energy into
a macroscopic inertia term and a pressure term that repre-
sents the aggregate effect of particle motion about the mean.
Whether or not such a break-up is valid for quantum trans-
port is pivotal for establishing whether the DG description of
tunneling is actually physically meaningful, and is not sim-
ply either curve-fitting or quantum mechanics in disguise.

Regarding the last point, there is indeed a superficial
similarity between the DG equations and quantum mechan-
ics, and especially with the pure-state Schrödinger equa-
tion when put in its well-known “hydrodynamic” form [20].
However, the application to tunneling is most revealing of
the disparate natures of these two theories that sit on oppo-
site sides of the microscopic-macroscopic dichotomy (see
Sect. 1.1). One major difference already noted is the treat-
ment of kinetic energy and its splitting in the macroscopic
approach. Another crucial difference, discussed further in
Sect. 4.2, is the essentiality of boundary conditions in the
macroscopic approach. In quantum mechanics, boundary
conditions are not fundamental—indeed the very idea of
separating two materials by a sharp mathematical bound-
ary/interface is a macroscopic one. A third difference be-
tween the theories is mathematical and has to do with the
nature of the quantum mechanical “perturbation” set by the
small parameters �

2 or bn (or bp). In both cases, the pa-
rameter multiplies the highest-order derivative and hence is
referred to as a singular perturbation. But as is well known in
quantum mechanics, the Schrödinger equation breaks down
globally as � vanishes [46], whereas DG theory breaks down
only locally in the limit of vanishing bn (or bp). The upshot
is that DG theory’s quantum effects are restricted to local-
ized boundary layers.

Equations (4.1.1a), (4.1.1b) and (4.1.1c) are written in a
form appropriate for multi-dimensions, and for some prob-
lems this generality is clearly critical, e.g., tunneling in an
STM [47]. However for most device tunneling problems, a
1D (or quasi-1D) treatment suffices. Moreover, the conse-
quent simplifications—primarily that the flow directions do
not have to be solved for—make the 1D equations especially
useful for decoding the physics, and for elucidating the na-
ture and form of the boundary conditions. It is for these rea-
sons also that the 1D equations have been emphasized in the
literature and will be focused on in this review. The geome-
try is as shown in Fig. 4.1.1 for a single barrier of width d ,
with bias V applied on the right electrode, and with forward
(reverse) electrons flowing with (against) the bias. The treat-
ment of hole tunneling is entirely analogous throughout, and
so for simplicity will be ignored. We further specialize to
steady state (and as noted before neglect space charge in the
barrier), in which case the 1D versions of (4.1.1a), (4.1.1b)
and (4.1.1c) for the forward and reverse electrons admit ob-
vious integrals:

nvn = Jn, uvu = Ju, ψ = V x/d (4.1.2a)

Fig. 4.1.1 Schematic depicting the macroscopic interpretation of tun-
neling

ψ − φDD
n + 2

s
(bns,x),x − mn

2q
v2n = �n

ψ − φDD
u + 2

z
(buz,x),x − mu

2q
v2u = �u

(4.1.2b)

where Jn, Ju, �n and �u are integration constants, and
u ≡ z2 is the density of the reverse-flowing electrons.23 As
depicted in Fig. 4.1.1, each electron population (labeled n

or u) is associated with a particular electrode and, as de-
scribed by the foregoing equations, evanescence consists of
the “leaking” of these carriers into the barrier. If apprecia-
ble numbers of carriers manage to traverse the barrier (as
revealed by the presence of significant carrier density at the
opposite electrode), then their “capture” and “conversion”
to the carrier type of the downstream electrode is what con-
stitutes tunneling. At zero bias (V = 0), the forward and re-
verse current flows will balance and zero net current will
flow; as bias is applied the forward current grows quickly
and the reverse current soon becomes negligible.

From a mathematical/computational standpoint, DGT
theory differs from its classical analog (i.e., ballistic trans-
port theory) in that with the latter the hyperbolic character
of the left sides of (4.1.1b) is the main source of complexity.
In DGT theory the high-order derivatives of the DG terms
instead tend to dominate and this preserves much of the el-
liptic/parabolic character exhibited by the DGC equations
(especially in 1D). Qualitatively, the DG terms in (4.1.2b)
force strong exponential {“tunneling”) decays in the con-
centrations away from the emitting electrodes, and since
(4.1.2a)1 and (4.1.2a)2 imply inverse relationships between
density and velocity, the macroscopic kinetic energy terms
in (4.1.2b) will be appreciable only where the densities are
smallest. This generally occurs in the immediate vicinity of
the downstream electrode, and thus throughout almost the
entire barrier one can employ a “quasistatic” treatment in
which inertial effects are entirely ignored. From a numerical

23The choice of the variable names u and z for the reverse electron gas
is a mnemonic introduced in [32] with these names being the “reverse”
of n and s, respectively.
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standpoint this fact together with the thinness of the barri-
ers makes the DGT equations relatively simple at least in
one dimension. Using a “Slotboom” approach as discussed
in Sect. 3.1 [25], the author has had little trouble in solving
these equations using either his own finite-difference code
or with the finite-element method as implemented in the
Comsol package see footnote 13.

4.2 Tunneling boundary conditions

As noted in Sect. 4.1, the boundary conditions of DGT the-
ory differ from those of DGC theory because the direc-
tionality of the flows imposes a distinction between “up-
stream” and “downstream” boundaries (see Fig. 4.1.1). The
upstream conditions are taken to be simple continuity con-
ditions to reflect mathematically the idea that each tunneling
carrier population is “part of” the carrier population in the
upstream electrode. In contrast, the downstream conditions
are both less clear and more complicated because they must
quantify the capture of carriers that manage to traverse the
barrier.

To aid in developing forms for the downstream condi-
tions we focus first on the forward electron population that
dominates the current except near zero bias. Assuming that
the voltage drops in the electrodes are small, the electrons
traversing in the forward direction will pick up energy equal
to the entire applied voltage. Further assuming that all of
these electrons are captured (rather than returning to the
emitting electrode) then the average velocity of the electrons
reaching the downstream electrode will be

vn(x = d) ∼= γ ideal
n (ballistic) ≡ √

2qV/mn or

Jn = γns
2(x = d)

(4.2.1)

where the parameter γn ≡ γ ideal
n (ballistic) has been called

the tunneling recombination velocity (TRV) [41]. Next,
we assume that inside the downstream electrode the evanes-
cent carriers that have arrived from upstream form an ener-
getic “minority” carrier population n that merges with the
native “majority” carriers of that electrode (of density u) at
a rate determined by a thermalization lifetime τn. The con-
tinuity equations inside the downstream electrode then take
the form

(nvn),x = −n/τn and (uvu),x = u/τn (4.2.2)

Now, if we assume that vn is slowly varying across the in-
terface, then combining (4.2.2)1 with (4.2.1) yields

s,x(x=d)= − s(x = d)

2γnτn

(4.2.3)

Equations (4.2.1)2 and (4.2.3) were referred to as general-
ized TRV conditions in [44]. They contain two parameters—
namely γn and τn—with an expression for the former being

Fig. 4.2.1 Effect of scattering on the parameters defining ideal capture
of electrons by the downstream electrode

given in (4.2.1)1. With respect to the thermalization lifetime,
it was shown in [44] that it is usually sufficient to consider
only the limiting cases of τn being either “large” (elastic
capture) or “small” (inelastic capture). The TRV conditions
in these limits are readily shown to take the forms (that first
appeared in [41]):

TRV1: s,x(x = d) = 0 and Jn = γns
2(x = d)

(elastic capture, τn → ∞) (4.2.4a)

TRV2: s(x = d) = 0 and Jn = γgs
2
,x(x = d)

(inelastic capture, τn → 0) (4.2.4b)

where the parameter γg is discussed further below. Although
not fully explored, there is evidence that the TRV1 condi-
tions are more appropriate when the electrodes are semicon-
ductors [44], whereas the TRV2 conditions seem to be better
for metal electrodes [45]. In any case, it is to be emphasized
that, within the assumptions made (and especially (4.2.1)1),
the TRV1 and TRV2 conditions contain no free parameters.

In order to investigate the behavior between the TRV1
and TRV2 limits, we observe that scattering in the down-
stream electrode cannot deliver more current than is ob-
tained in the elastic limit. On this basis, we then consider
a situation that includes scattering (with a given τn) and
obtain a value for γn ≡ γ ideal

n (scattering) by curve-fitting
the DG current in the no-scattering limit (for a particular
semiconductor-insulator-semiconductor diode under a given
bias) using quasistatic DG theory [44] with (12). The results,
plotted as γn versus a thermalization length LT ≡ γnτn, ap-
pear in Fig. 4.2.1. When the scattering is weak we see that γn

is essentially constant (independent of τn); again this is the
“elastic capture” regime governed by the TRV1 conditions



J Comput Electron (2011) 10:65–97 89

Fig. 4.2.2 The effect of scattering in the downstream electrode on the
right-going electron density profile

in (4.2.4a). In the case of strong scattering, the asymptotic
ideal obtains when

γn
∼= γ ideal

n (scattering) ≡ anτ
−2/3
n (4.2.5)

where an is a voltage-dependent constant that depends on
γ ideal
n (ballistic) through the curve-fitting, and is also related

to the constant in (4.2.4b)2 by γg = 4a3n. Figure 4.2.1 shows
that the TRV1 and TRV2 limits actually cover almost the en-
tire range, and that only in the narrow range of LT ∼ 2–10Å
is an intermediate scattering regime seen. In this regime the
conditions in (4.2.4a) and (4.2.4b) are not good approxima-
tions, and one instead needs to use the generalized condi-
tions in (4.2.1)2 and (4.2.3) which depend on τn explicitly.
For a particular SIS diode, a few solution profiles for situ-
ations of ideal weak, strong and intermediate scattering as
defined by Fig. 4.2.1 are shown in Fig. 4.2.2. The inset dis-
plays the entire profile, while the main plot is a close-up in
the vicinity of the downstream electrode. As the inset shows,
the solutions are indeed largely unaffected by the down-
stream BC and its representation of the scattering, and it is
only in the immediate vicinity of the downstream electrode
that the solutions are altered by the details of the electron
capture process. The observed variations in density (as well
as the concomitant rise in γn according to (4.2.5)) suggest
that the scattering is causing the electron gas to accelerate
as it gets very close the contact (within about 1–2 Å). It is
likely that this is an artifact of the low-order equations at-
tempting to represent the extremely rapid conversion and
disappearance of the tunneling electrons as they enter the
downstream electrode.

With respect to the reverse current, the considerations are
much the same but there is one main difference in SIS de-
vices. Specifically, as depicted in Fig. 4.2.3, for electrons

Fig. 4.2.3 Schematic showing the forward and reverse tunneling pop-
ulations and the bandgap blocking effect that acts on the reverse popu-
lation u1

in the population u1, there will be a “bandgap blocking ef-
fect” [32] wherein the lack of final states prevents any cap-
ture/tunneling from occurring. As shown, evanescence of
these carriers will still occur, and in this way they could still
influence behavior through the electrostatics, however, this
is unlikely ever to be important. For understanding reverse
tunneling we can therefore focus entirely on the population
u2 in Fig. 4.2.3. Since the equation of state is independent
of the velocity, the chemical potential of this gas can be esti-
mated using statistical mechanics and the upstream density
will be given by

u2 =
∫ ∞

EC+ES

f (E)g(E)dE ∼= 2u√
π

�

(
3

2
,

ES

kBT

)

where f (E) = 1

1+ exp[(E − Ei − qϕ0
u)/kBT ] (4.2.6)

where ES is the “splitting energy” defined in Fig. 4.2.3,
g(E) and ϕ0

u are respectively the density of states and chem-
ical potential in the right electrode, and the usual approxi-
mation of making the upper limit of the integral infinity has
been instituted. The approximation in (4.2.6) is that appro-
priate for parabolic bands and Maxwell-Boltzmann statis-
tics where � is the incomplete gamma function. Not sur-
prisingly, u2 approaches u exp(−ES/kBT ) for ES � kBT .
Lastly, arguments like those given in relation to (4.2.1)1 pro-
vide an estimate of the capture velocity at the left electrode
of γu = √−[kBT ln(u2/u) + qV ]/mu.

4.3 Elastic tunneling in 1D: theoretical comparisons

In this section we analyze 1D semiconductor-insulator-
semiconductor (SIS) diodes with heavily doped n-type con-
tacts as depicted in Fig. 4.1.1 using DGT theory and assess
its accuracy and range by comparing its results with those
of quantum mechanics. As in Sect. 3, such comparisons
between theories (as opposed to comparisons with experi-
ment [32]) are especially instructive because of the greater
knowledge and control one has over physical content. In the
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Fig. 4.3.1 Current-voltage characteristics of SIS diodes as computed by NEGF (squares) and DG (dashed lines) with varying barrier heights
for a 3 nm barrier with electrode dopings of (a) 1019 cm−3, (b) 1020 cm−3 and (c) 1021 cm−3, and (d) a 1 nm barrier with electrode doping of
1020 cm−3

past, such studies were used to examine the DGT treatment
of tunneling from both metal [45] and semiconductor [44]
electrodes with the latter being emphasized here.

The DG solutions are obtained by solving the DGT equa-
tions of Sect. 4.1 with rn = 1 inside the barrier and using the
tunneling BCs of Sect. 4.2. For the transport in the semicon-
ductor electrodes it is assumed for convenience that strong
scattering conditions prevail so that the appropriate equa-
tions are those of DGC theory with rn usually taken to be 3
(see Sect. 3). The analogous quantum mechanical analyses
are performed using the NEGF approach assuming elastic
tunneling. Of course for the comparisons to be most mean-
ingful, to the extent possible the two methods need to exam-
ine the same physical situation, a potentially tricky propo-
sition given that one theory is microscopic and the other
macroscopic. However, our matching is much aided by the
fact that the quantum mechanical treatment is itself not fully
microscopic in that it contains a number of macroscopic
elements. Thus the NEGF invokes the effective-mass ap-
proximation with both theories using the same electron ef-

fective mass (0.328m0) as well as identical barrier heights,
uniform (jellium) doping densities and dielectric properties.
To match DGT theory, the NEGF calculations also include
the Hartree electrostatics. Lastly, regarding scattering both
treatments are scattering-free within the barrier. That the
DG calculations include scattering in the upstream electrode
whereas the NEGF does not, is not expected to have much
impact because of the heavy doping. At the downstream
electrode the DG simulations ignore scattering by using the
TRV1 condition in (4.2.4a).

As a first set of DG/NEGF comparisons, in Figs. 4.3.1a–
4.3.1d we plot the current density versus voltage (J–V ) for
SIS diodes with various barrier heights, electrode doping the
levels and barrier thicknesses. In general, the DG predictions
are in excellent agreement with the NEGF calculations, and
especially when one considers the exponential nature of the
tunneling currents. The fact that these plots involve no curve
fitting means these agreements are strong evidence in favor
of DGT theory’s macroscopic representation of the physics.
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Fig. 4.3.2 Forward current for SIS diodes with three different barrier
heights as computed by DG theory with and without the kinetic energy
included. Also shown is a simple correction to the calculation without
kinetic energy that leads to good agreement over most of the range

As emphasized earlier, one key aspect of DGT theory is
its assertion that the kinetic energy of the tunneling electron
gas can be split into macroscopic and microscopic contri-
butions. To test this assumption directly, in Fig. 4.3.2 we
compare DG calculations for a few SIS diodes as calculated
with (solid curve) and without (dashed curve) the kinetic en-
ergy term included. Also shown in the figure are the NEGF
results for these diodes (squares). Clearly, the kinetic energy
term is needed for the DG simulations to be most accurate,
and not surprisingly this is particularly true at higher bias.
Thus DG theory’s fundamental splitting of the kinetic en-
ergy does indeed appear to be valid.24 Finally, that the ki-
netic energy is important only in the immediate vicinity of
the downstream electrode (as noted in Sect. 4.2) makes it
possible to subsume its effect into the TRV1 condition. In
particular, it was shown in [44] that if one multiplies γn by
the factor (1 − V/φB), one can achieve a good representa-
tion (see Fig. 4.3.2, dotted curve) over most of the bias range
using a “quasistatic” treatment in which the kinetic energy
term is not included explicitly in the differential equation
(4.1.2b).

Although the agreements between the J–V characteris-
tics calculated by DGT theory and NEGF in Figs. 4.3.1a–
4.3.1d are quite good, discrepancies do exist and are seen
to grow with increasing electrode doping and barrier height.
To understand the DG errors25 better we next compare field
solutions. A first set of comparisons is shown in Figs. 4.3.3a

24This conclusion has implications for transient behavior as well but
fidelity in this regard would be hard to demonstrate.
25These differences between the DG and NEGF simulations are re-
garded as DG errors. However, since the two theories differ in physical
content, it is conceivable that the DG results could actually correspond
better with experiment much as in the quantum confinement situation
discussed in Fig. 3.2.7.

(a)

(b)

Fig. 4.3.3 (a) Semi-log and (b) linear density profiles as calculated
by NEGF (dashed) and DG (solid) profiles in an SIS diode with three
different electrode doping concentrations

and 4.3.3b where we plot the electron density profiles as
computed by NEGF and DG for SIS diodes with φB = 3 eV,
d = 3 nm, V = 1 V, and ND = 1019, 1020 or 1021 cm−3.
Generally the picture is one of superb agreement and, as be-
fore, this is especially so when one considers the extremely
wide variation in densities involved. The most important er-
rors are the small differences in the minority carrier den-
sity (n) in the right electrode seen in Fig. 4.3.3a since these
relate directly to the current via (4.2.4a). In accord with
Fig. 4.3.1a–4.3.1c, these errors grow with increasing dop-
ing. A second DG error, most evident in Fig. 4.3.3b and
again amplified by doping, is in the density profiles inside
both electrodes. These screening errors were first noted in
the context of metals where they are especially large [45]
and can be traced to DG theory’s neglect of higher-order
gradient effects [44, 45]. Fundamentally this error is not a
tunneling error but a confinement error, and indeed has al-
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Fig. 4.3.4 Electric potential profiles across various SIS diodes and
showing their “image charge” barrier-lowering effect

ready been seen in that connection in Sect. 3.2 and espe-
cially Fig. 3.2.6. As before, not only are the profile shapes
incorrect but there is also a complete absence of the Friedel
oscillations that characterize the quantum mechanical sim-
ulations [31]. In the case of tunneling the most important
consequence of these screening errors is that they actually
cause the errors in the downstream density in Fig. 4.3.3a
and hence produce the errors in the calculated currents in
Fig. 4.3.1. To see this, we note that the dominant electrosta-
tic effect at these concentrations is a barrier-lowering com-
monly referred to as an “image charge effect” that is associ-
ated with the proximity of the two electrodes [45]. A plot of
the barrier lowering for the cases of Figs. 4.3.3a–4.3.3b as
computed by NEGF and DG is shown in Fig. 4.3.4. Quali-
tatively, it is clear that DG theory is capturing much of the
physics associated with the coupled electrostatics. However,
quantitatively it is also evident that there is a growing er-
ror in the barrier-lowering with increased doping. At a dop-
ing of 1021 cm−3, the error is about 69 mV. (Because of the
differences in density, there is also an error in the chemi-
cal potential but this turns out to be only about 12 mV, so
the electrostatic effect is dominant.) As dictated by (4.1.1a),
(4.1.1b) and (4.1.1c), the barrier height error translates di-
rectly into an error in the exponent that sets the evanescent
decay inside the barrier, that is discernable as an error in the
slopes in Fig. 4.3.3a, and that leads to the observed errors
in the downstream densities. This then demonstrates that the
main errors in Figs. 4.3.1a–4.3.1d are not the result of a flaw
in the DGT treatment of quantum mechanical tunneling, but
rather stem from inadequacies in DG theory’s representation
of quantum confinement as already discussed in Sect. 3.

One final error in the forward-density is a discontinu-
ity in n at the surface of the downstream (right) electrode
in the DG-NEGF comparison at V = 0.2 V in Fig. 4.3.5.
This discontinuity originates in the assumption of the weak-
scattering electrode (see Sect. 4.2) wherein the transport is

Fig. 4.3.5 Close-up of a portion of Fig. 4.3.3a near the surface of the
right electrode

Fig. 4.3.6 Comparison of forward and reverse J–V characteristics as
computed by NEGF and DG for a particular case

taken to be purely ballistic. The small size of the disconti-
nuity suggests that this assumption is quite good. Moreover,
as the bias increases from this very small value, the discon-
tinuity becomes even smaller (data not shown) because of
the larger kinetic energy. Lastly, we note from Fig. 4.3.5
that the NEGF result also exhibits some density oscillations
in the downstream electrode that are not present in the DG
simulation.

As noted earlier, the current contribution of the reverse-
density u is much less important than that of the forward-
density in that it plays a significant role only at very low bi-
ases. This may be seen in the DG-NEGF comparison shown
in Fig. 4.3.6 where we plot the forward and reverse cur-
rents versus applied bias. The error in the reverse current
(as well as the accuracy of the forward current) is apparent,
as is the fact that this error decreases as the bias is reduced.
As a result, the DG-calculated reverse current is fortuitously
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Fig. 4.3.7 Illustration of the
effect of transverse momentum
on tunneling of u2

becoming most accurate just at the biases where it is most
important (below a few kBT ). Indeed, this error vanishes at
zero bias when the forward and reverse currents come into
balance yielding zero total current. The origin of this behav-
ior is not entirely certain, but it is most likely due to the sig-
nificant number of electrons in the important population u2
(see Fig. 4.2.3) that have high transverse momentum. As de-
picted schematically in Fig. 4.3.7, the anisotropy will cause
such electrons to have a reduced average tunneling prob-
ability and will thereby decrease the total reverse current.
This explanation is consistent with Fig. 4.3.6 and DG the-
ory’s growing over-estimation of the reverse current as the
applied bias increases.

4.4 Elastic tunneling in 1D: phenomenology

The primary error made by DG theory in modeling tunneling
originates, as discussed in connection with Fig. 4.3.4, in in-
accuracies in DG theory’s representation of the high-density
screening layers inside the semiconductor electrodes. This
flaw of DG theory is well known though not fully under-
stood, having been noted in the contexts of both quantum
confinement in Sect. 3 and also in field emission frommetals
in [45]. A physically well-motivated approach for improv-
ing the representation would be to develop a higher-order
DG theory with the hope that including higher-order gra-
dient terms would provide significant improvements. This
physics-based possibility is not pursued here however.Other
ways of refining the description are phenomenological in na-
ture, essentially using DG theory as the mathematical frame-
work and treating one or more of its coefficients as fitting
parameters. Although in past work on tunneling we did such
fitting using γn and γg [41], given our identification of the
source of the error as being in the treatment of the quantum
confinement, it seems better to use the surprisingly accurate
phenomenology of Sect. 3 with the quantity rn in (2.5.7a)2
as the fitting parameter.

With this as motivation, we develop a phenomenologi-
cal treatment of the barrier-tunneling problem of the pre-
vious section by using rn as a fitting function as done in
[44]. Demonstrating the efficacy of this approach, if we al-
low rn to vary with density as shown in Fig. 4.4.1, then the
comparisons of Figs. 4.3.1a and 4.3.1c are now as shown in
Figs. 4.4.2a and 4.4.2b. The improved agreement is obvious.

Fig. 4.4.1 Assumed variation of rn as a function of density in order to
get the curvefits displayed in Figs. 4.4.2a, 4.4.2b

(a)

(b)

Fig. 4.4.2 Identical plots as shown in Figs. 4.3.1a and 4.3.1c with
electrode dopings of (a) 1019 and (b) 1021 cm−3 except that the DG
calculations were obtained with the parameter rn selected to vary with
density as shown in Fig. 4.4.1
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(a)

(b)

Fig. 4.5.1 Comparison of DGT simulations with experimental gate
current characteristics from [32] with various gate oxide thicknesses
and for (a) n+ poly gates and (b) p+ poly gates

Evidence that this is merely curve-fitting is to be found in the
fact that the calculated density profiles obtained in this way
(not shown) are not noticeably better than those displayed in
Fig. 4.3.4. Thus, curve-fits of this sort should be viewed as
no more than mathematical representations that may be of
value for engineering.

One final form of tunneling phenomenology that has al-
ready been discussed (Sect. 3.5) is that of using DGC theory.
As noted in the earlier section, this approach is especially ef-
fective in complicated situations such as that of source-drain
tunneling in a short-channel FET. A DGT approach to this
same problem seems unworkable because it would require
multiple tunneling populations as well as a need to define
precisely where the tunneling is occurring.

4.5 Elastic tunneling in 1D: experimental comparisons

As discussed in Sect. 3, comparisons of theory with exper-
iment are generally harder to make. From the experimental

(a)

(b)

Fig. 4.5.2 Energy band diagram and carrier profiles in the DGT ap-
proximation for an n+-poly MOSFET (tox = 15 Å) with zero gate volt-
age and the source floating. (a) Shows the full device while (b) shows
a close-up of the barrier region

side a main difficulty is insufficient knowledge, e.g., about
doping profiles, surface roughness, or defects. And theory
can be deceptive if any curve-fitting of experiment is done,
since this can easily hide modeling deficiencies. Neverthe-
less, experiment is reality, and so it is always the ultimate
test. For DGT theory the most meaningful comparisons with
experiment to date appeared in [32], and a few results from
that work are briefly reviewed next.

The experiments of [32] were measurements of gate cur-
rent in carefully characterized MOS capacitors and gated
diodes with ultra-thin oxides. Basic comparisons of DGT
theory and experiment for n+ and p+ poly gate devices
with several different gate oxide thicknesses are shown in
Figs. 4.5.1a and 4.5.1b, respectively. Both electron and hole
tunneling are included and one curve-fit is involved, namely
of an “effective” tunneling area that is a fixed multiplicative
factor in all the curves. The qualitative shapes of the results
are determined by a combination of the tunneling and band-
bending in the channel. Clearly, the agreements are excel-
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lent. This is additional evidence of the validity of the DGT
description, and is also an illustration of the method’s utility
when applied to real device situations. A further demonstra-
tion of the latter point is in Fig. 4.5.2a and the close-up in
Fig. 4.5.2b which show the band diagram and density pro-
file across an MOS capacitor. What is most interesting about
these plots is that they exhibit the ability of the single set of
differential equations of DG theory to capture both the fine
details of the barrier tunneling that occur on an Ångstrom-
scale and the ordinary device physics that plays out over mi-
cron scales.

5 Final remarks

The singular fact of the electronics revolution is the extra-
ordinary half-century of exponential progress that has taken
place in accord with Moore’s Law. However, notwithstand-
ing a long history of erroneous predictions,26 it seems safe
to say that the “endgame” has now finally begun. In striv-
ing for further advances, this concluding epoch—which will
surely define what the buzz word “nanoelectronics” really
means—will clearly be characterized by an increasingly var-
ied set of physical phenomena, materials, processes, device
geometries and circuit architectures. In this expanding uni-
verse, the technical obstacles and the accompanying eco-
nomic costs will continue to escalate,27 and among other
things, this will open up many new challenges and oppor-
tunities for modeling and simulation. And with respect to
the topic of this review, the physical phenomena of quantum
confinement and quantum tunneling will undoubtedly grow
ever more ubiquitous, and so DG theory is sure to remain
relevant.

As presented in this review, DG theory possesses a sub-
stantial capacity for the analysis of current flows in semicon-
ductor devices when quantum confinement and tunneling
effects are important. In many cases, this capability comes
from the DG description being physically well founded, but
just as often the approach’s vitality stems from its surpris-
ing potency as a phenomenology. These demonstrated pow-
ers are likely to make the DG approach a valuable tool
for future device engineering. Beyond this, it is important
to recognize that DG theory remains a work in progress,
and like all classical field theories, it constitutes a flexi-
ble framework in which broader generalizations and fur-
ther extensions can be investigated in a consistent fashion.

26Interestingly, such predictions actually antedate Moore’s Law by a
few years with the earliest public expression known to this author being
in 1961 [49].
27One probable consequence of the economics is a continued narrow-
ing of the number of chipmakers who can afford to remain in the
“game”.

The key to this potentiality are the material response func-
tions discussed in Sect. 2.2. (Another as-yet-unexplored av-
enue for generalization is the possibility of higher-order ver-
sions of the theory that include dependences on the second-
gradients, etc.) Some of the areas for which DG theory might
well prove useful (including some for which initial studies
have already been conducted) are multi-dimensional tun-
neling [47], Fowler-Nordheim tunneling [41], reverse-bias
Schottky barrier tunneling, Zener tunneling, and field emis-
sion from metals [45].

Given the amazing longevity of DD theory, perhaps even
more important reasons that DG theory will remain utile are
its familiarity, robustness, and efficiency as compared with
microscopic alternatives.28 The DG approach is of course
familiar both as a straightforward generalization of DD the-
ory and mathematically as a coupled set of partial differ-
ential equations. With regards to robustness, continuum ap-
proaches are justly renowned for this attribute [1], and DG
theory is especially resilient because of the many sources
of smoothing inherent in electronic devices, e.g., quantum
mechanical “smearing” of light-mass electrons/holes, tem-
poral averaging, width averaging, etc. Finally, the efficiency
of the DG approach originates in part from the ease with
which its PDEs can be solved numerically, a benefit of years
of research on PDE methods and the associated software in-
frastructure. A second source of efficiency is the fact that
DG theory can readily provide unified treatments of “com-
plex” devices, e.g., of a large multi-dimensional classical
device with an embedded tunnel barrier. By contrast, mi-
croscopic methods tend to be far inferior, especially in of-
ten being extremely intensive computationally (particularly
when scattering and the full self-consistent physics is in-
cluded), and notoriously ill-suited to marrying different lev-
els of treatment (e.g., Boltzmann theory in one region with
NEGF in another). Another major weakness of microscopic
treatments is their dependence on microscopic assumptions
(e.g., scattering cross-sections at high energy) whose neces-
sity, validity and range are often hard to ascertain.

Despite DG theory’s (and DG phenomenology’s) power
and flexibility, one should not lose sight of the fact that
the approach is still an approximate one. For the descrip-
tion of quantum effects, this has two major consequences.
First, as we saw from DG theory’s lack of Friedel oscilla-
tions (Sects. 3.2 and 4.3), the theory does not describe inter-
ference phenomena or, more generally, any effect in which
phase plays a determinative role. Most critically, this means
that there are many potential devices like those of molec-
ular electronics for which only a full quantum mechanical

28Over the years, academic researchers have often suggested that the
utility of continuum approaches was coming to an end, and that they
would soon have to be replaced by microscopic methods even for de-
vice engineering. Curiously paralleling the incorrect technology fore-
casts of the past, all such predictions have to date proven premature.
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description will suffice. The second area of weakness comes
not from a failure of the DG approximation per se, but rather
from a failure of its underlying continuum approximation.
An example involving quantum transport is seen in tunnel-
ing situations with non-abrupt barriers where, in effect, one
has a different barrier at each energy so that a representa-
tion in terms of a single (or a few) well-defined tunneling
population does not seem tenable. How serious this latter
error is remains to be seen, but the success of a simple
DGC phenomenology in modeling source-drain tunneling
(see Sect. 3.5) gives cause for optimism.

Given the comparative advantages and disadvantages of
the macroscopic and microscopic approaches to quantum
transport, it is best not to rely solely on one class of meth-
ods over the other. Instead they should be regarded as com-
plementary with each being a potentially valuable weapon
in the service of device engineers and designers. Which to
use largely depends on the nature of the application and on
one’s motivation (e.g., device design using well-understood
materials or predicting ultimate performance of some new
material like graphene). As a tactical choice for engineering
applications, this author’s view is that if a continuum de-
scription is available, then it should “always” be used, with
microscopic theory being used solely (if at all) as a means
of estimating the macroscopic and/or phenomenological co-
efficients such as the DG effective mass. Of course if a con-
tinuum description is untenable, then the only available the-
oretical route would be a full quantum transport theory such
as that provided by NEGF.

Finally, to close with a provocative supposition it may
not be mere coincidence that macroscopic descriptions of
electron transport are being pushed to their limits at just the
same time that Moore’s Law is coming to an end. The logic
behind this assertion is that ultra-small devices without the
“large numbers” needed to smooth out various sources of
randomness (e.g., thermal, quantum, geometric or dopant
fluctuations) and hence to ensure regular, predictable behav-
ior will also tend to be ones that lack the well-defined av-
erages upon which continuum descriptions depend. If this
admittedly speculative claim is correct, then it could be that
a sine qua non for any future nanoelectronics technology
is that its electron transport be such that it is describable
by macroscopic modeling methods! And if not, then the
time may at long last have come when microscopic descrip-
tions of electron transport and the requisite computational
infrastructure must finally mature to the point of providing
real-world engineering tools.
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